OVERSAMPLED MODULATED FILTER BANKS AND TIGHT GABOR
FRAMES IN ¢*(Z)

Zoran Cuvetkovié

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720, USA
zoran@eecs.berkeley.edu

ABSTRACT

The subject of this study is paraunitary [1] modulated
filter banks. A factorization of the polyphase matrices
of these filter banks, which is described here, gives com-
plete characterization of tight Gabor frames in ¢2(Z),
with arbitrary rational oversampling ratios. Tight Ga-
bor frames, being less constrained than orthogonal bases,
allow for filter bank designs with good localization in
both time and frequency.

1. Introduction

Gabor functions have been shown to be useful for
analysis of continuous time signals, owing to their local
character in the joint time-frequency domain. Along
with the development of Gabor’s original scheme in the
1980’s, it was observed that such local time-frequency
representations can be stable only in the overcomplete
case [2, 3]. Another incarnation of the same phenomenon
is expressed by the Balian-Low theorem [4, 5] which im-
plies that there are no orthogonal Gabor bases which
have good localization in both time and frequency. How-
ever, as soon as some redundancy is introduced, the
picture changes drastically and, as demonstrated by
Daubechies [6], good localization of tight Gabor frames
is attainable.

In £2(Z) Gabor frames are equivalent to modulated
filter banks. An effect similar to that described by the
Balian-Low theorem has been observed by Vetterli [7],
who demonstrated that there are no critically sampled
modulated filter banks with finite impulse responses
and good frequency selectivity. The purpose of this pa-
per is to investigate the existence of oversampled mod-
ulated filter banks, in particular those which generate
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tight frames, with finite support in time and also good
localization in frequency.

In the following, a complete characterization of tight
Gabor frames in £2(Z) with arbitrary rational oversam-
pling ratios is described within the framework of mod-
ulated filter banks. Oversampled filter banks are much
less constrained than critically sampled ones and conse-
quently allow for the design of frequency selective FIR
linear phase filters. In other words, there exist tight
Gabor frames in ¢2(Z) with symmetries and good lo-
calization in the time-frequency domain. We provide a
design example to illustrate this point.

2. Polyphase Description of
Oversampled Modulated Filter
Banks

We investigate the properties of oversampled fil-
ter banks using polyphase domain analysis [1]. Anal-
ysis filters of a K-channel filter bank are denoted by
Go(z), G1(2) ...Gk-1(z) while the associated polyphase
matrix is denoted by G,(z). If decimation by a factor
of N < K isemployed in each channel, Gp(z) isa Kx N
matrix of polyphase components, [(G,(z)];; = Gi;j(2) is
the j-th polyphase component of G;(z).

In the case of modulated filter banks, the analy-
sis filters are obtained from a single prototype low-
pass filter, H(z), according to G;(z) = H(W} z), where
Wy = exp(j4). Let M be the least common multiple
of K and N and let J and L be the two integers sat-
isfying JK = LN = M. The M-component polyphase
representation of H(z) has the form:

M-1
H(z)= ) 277 H;(z"). ey
j=0
Elements of the polyphase matrix can be expressed as

L-1
Gii(2) = Y WMl (). (@)
=0

1456



This gives following factorization:
Gp(2) = Wk B(2), (3)
where Wk is the K x K DFT matrix and

B(z) = [IK...IK] :
In
. _II
-diag (Ho(zL)--.HM—l(ZL)) ‘ ...N
z—(L—l)IN

I, here stands for the n x n identity matrix.
By inspection of the above factorization one can see
that elements of B(z) are given by

[B(Z)]z] = z—qu+PK(zL) 1= 0) 17 )I{—' 11 (4)
i=0,1,.. N—1

where p and ¢ are integers satisfying
i+pK=j+4qN, p<J—-1, ¢<L-1. (5)

Note that equation (5) cannot be satisfied for every pair
of integers ¢ and j. In fact, for each j there are exactly
J indices, ¢, which satisfy (5). Consequently J nonzero
elements are evenly distributed in each row of B(z)
and L nonzero elements are evenly distributed in each
column of B(z). Three possible cases are illustrated by
following examples.

Example 1 K is a multiple of N. In this case, J = 1, so
that there is a single nonzero element in each row of B(z).
For K =6 and N = 3 we have:

Ho(z%) 0 0
0 Hi(2%) 0
_ 0 0 Hi(2%)
B(z) = 271 Ha(2%) 0 0
0 27 Hy(2%) 0
0 0 z_le(zz)

Example 2 K and N are coprime. In this case, J = N,
so that all elements of B(z) are nonzero. For K = 3 and
N = 2 we obtain:

Ho(za) Z_lHa(zs)
B(z) = z_2H4(23) Hl(zs)
2T Hy(2%) 272 Hs(2%)

Example 3 Neither of the above cases, eg. K = 6 and
N = ¢ yields B(z) equal to the following matrix:

Ho(z%) 0 z7 1 He(2%) 0
0 Hy(2%) 0 27 Hq(2*)
272 Hg(2%) 0 H(2%) 0
0 272 Hy(2%) 0 Hi(2%)
Z~1H4(23) 0 z_2H10(23) 0
0 2T Hs(2%) v 272 Hya (2°)

3. Tight Gabor Frames in (*(Z)

Tight frame conditions on oversampled filter banks
are given by the following proposition, which holds for
obvious reasons.

Proposition 1 An oversampled filter bank implements
a tight frame decomposition in €2(Z) if and only if its
polyphase analysis matriz is paraunitary.

According to the definitions of B(z) and G,(z), the
paraunitariness condition [1] on Gy(z) is equivalent to

B(2)B(z) = cly.

For each element [ﬁ(z)B(z)] _. this condition imposes
i
the constraint:

L-1
Z ﬁi.;_[N(ZL)H".;.]N(ZL) =, ifi= j, (6)
1=0

or

L-1
Z Z—U(q+1)ﬁi+1N(zL)Hi+pK+IN(zL = 0’ lf i # J

i=0
| 7
In (7), p and ¢ have the same interpretation as in (5)
and the function, o(-), is given by:

_ q, q+i< L
"(“l)‘{ —(L-gq), ¢+I>1L

Noting that some of elements of B(z)B(z) are iden-
tically zero and taking symmetries into account, the
paraunitariness condition imposes N + N(—Jz-—ll distinct
constraints, N of which are given by (6), while the rest
are given by (7). We now investigate the implications
of these constraints for the three cases presented in Sec-
tion 2.

Case 1 K is a multiple of N.
Here, H(z) is constrained only by (6), which indicates
that the polyphase components

{H,'(Z), H,'+N(Z), ceny H,'+(L_1)N(Z)},

for each i = 0,..., N — 1 are power complementary. It
follows that they are the polyphase components of a
filter Fy(z), which is orthogonal to its translates by
multiples of L. Hence tight Gabor frames with an inte-
ger oversampling ratio K/N are generated by arbitrar-
ily selecting N orthogonal filters F;(z) and identifying
their polyphase components with the polyphase com-
ponents of H(z).

Case 2 K and N are coprime
In this case, the polyphase components of H(z) are, up
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to a time delay, equal to the entries of a full K x N
paraunitary matrix. For instance, in Example 2, pa-
raunitariness of G,(z) is equivalent to paraunitariness
of the matrix

HQ(Z) Hs(z)
Bo(z) = 2-1H4(Z) Hl(z)
Hy(z)  Hs(2)

Case 3 Neither of the above cases

The polyphase components of H(z) are again, up to
a time delay, simply the entries of N/J paraunitary
matrices, each of dimension L x J. In Example 3 of
Section 2, B(z) is parauntiry if and only if the matrices

Ho(z)  Hg(z)
Bo(z) = | z71Hg(z) Hs(z)
H4(Z) Hm(z) ]
and -
Hi(z)  Hr(z)
Bi(z) = | z7'He(z) Hs(z)
Hs(z) Hu(z) g

are paraunitary. Hence, finding B(2) amounts to find-
" ing the two 3 x 2 paraunitary matrices, Bo(z) and

Bl(z).

Conditions (6) and (7), being both necessary and
sufficent, represent a complete parametrization of tight
Gabor frames in ¢2(Z). Design of of the tight frames
then amounts to an optimization procedure under these
constraints. Recall that, in the case of perfect recon-
struction FIR modulated filter banks with critical sam-
pling, the polyphase components of H(z) can not have
more than one nonzero coefficient [7], which is too re-
strictive to obtain good frequency selectivity. We show,
by the following design example, that in the oversam-
pled case tight frames with good time frequency local-
ization are attainable.

Example 4 Consider case the N = 2 and K = 4. .With
the additional requirement that the prototype filter H(z) is
symmetric, the design consists of finding a single filter F(z)
which is orthogonal to its translates by multiples of 2. In
terms of their polyphase components, F(z) and H(z) are
given by

F(z) = Fo(zz) -+ z-lFl(zz)
H(z) = Ho(z*) + z7 Hi(2Y) + 2T H,(2%) + 2T H3(2%) °

The design constraints are thus satisfied by taking Ho(z)
and Hz(z) to be equal to Fy(z) and Fi(z), respectively,
and H;(z) and H3(z) to be their time reversed versions.
One solution, obtained from a 4-tap filter F(z), is shown in
Figure 1. Of course, better frequency selectivity could be
achieved with longer filters, F(z)
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Figure 1: Ar example of an 8-tap window function for tight
Gabor frames with the oversampling factor K/N = 2 .

4. Conclusion

In this paper, we have given a complete parametriza-
tion of tight Gabor frames in ¢2(Z). It turns out that
in the oversampled case there is sufficient freedom for
the design of tight Gabor frames with good localization
in the time-frequency domain.
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