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ABSTRACT

We examine the problem of reconstructing a discrete-time
signal given only n of its M-phase components. Borrowing
analysis from the field of perfect reconstruction filter banks
enables us to derive necessary and sufficient conditions un-
der which reconstruction is possible. Essentially, in a per-
fect reconmstruction system, the conditions to recomstruct
from partial information are equivalent to the conditions to
ensure that the rest of the information does not contribute
to the reconstructed signal.

An application is that this allows us to reconstruct multi-
band signals which have overall bandwidth of no more than
B, yet cannot be reconstructed from uniformly spaced sam-
ples at the minimum rate B/2x.

1 INTRODUCTION

It is well known that if a signal is lowpass bandlimited to
the region || < B/2 then it can be exactly reconstructed
from samples uniformly spaced B/27 apart. However, if a
signal covers the same amount B of the spectrum, but is
bandpass rather than lowpass the same is not necessarily
true. It depends on whether the aliased versions of the
spectrum X (Q + rB) overlap or not. If any overlap does
occur then reconstruction using uniformly spaced samples
at the rate B/2x is not possible. For a bandpass signal the
mirimum rate needed if uniform sampling is used can vary
from B/2x to B/n depending on the location of the band
edges. A detailed treatment is given in [8].

If the signal is multiband then the situation is even more
involved. If the total bandwidth is again B, it is known that
an average sampling rate of at least B/27 will be required,
which is known as the Nyquist-Landau rate [5]. Again, uni-
form sampling at this rate is possible only if overlap between
the spectral replicas does not occur [3]. For a multiband
signal with arbitrary bands, the minimum rate at which
uniform sampling can be used is quite unpredictable. On
the other hand second order sampling [4], or use of non-
uniform periodic sampling can allow a lower average rate
for bandpass and multiband signals [2, 6, 7]. The condi-
tions under which nonuniform sampling could be used has
not been thoroughly understood however.

Part of the work will be to establish how familiar tools
from multirate filter banks can be used to solve this prob-
lem. While we work in the discrete-time case for multi-
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band signals, the results that we generate also apply to
nonuniform periodic sampling of continuous-time signals.
We examine the conditions under which a multiband signal
can be reconstructed using periodic nonuniformly spaced
samples. For example if X (e’“) is limited to the range
(=37/6,—x/6) U (x/6,37/6) it cannot be reconstructed
from every third sample, as shown in Figure 2 (a), even
though it’s spectrum occupies only 1/3 of the region (—=,7)
and thus two thirds of the samples are redundant. However,
it can be reconstructed from nonuniform samples, with the
same overall rate, as shown in Figure 2 (b).

2 RECONSTRUCTION OF A SIGNAL FROM
N OF ITS M-PHASE COMPONENTS

Suppose that a discrete-time signal X (z) is written in terms
of its M-phase components

X(2) = Xo(z™) + 27 X1 (M) + - 2~V 50, (M),

We may write the problem of nonuniform sampling as that
of reconstructing X(z) from only n of the components
Xi(z). This implies that (at least) M — n out of every
M samples are redundant. This is different to the problem
of reconstruction from uniformly spaced samples, since we
now have n uniformly spaced sample trains, separated by
known phases. The rate is n/M. An example of the differ-
ence is shown in Figure 2 (a) where a every third sample of
a sequence is retained, and Figure 2 (b) where every sixth
sample shifted by 0 and shifted by 2 is retained. The rate
in both cases is the same, but the sampling pattern and the
conditions under which the signal can be reconstructed are
in general very different.

To determine these conditions consider the structure
shown in Figure 1, which is an M-channel perfect recon-
struction filter bank. We split the signal using a set of anal-
ysis filters Ho(z), H1(z),- -+ Hm-1(2) and recombine using
the synthesis filters Go(z), G1(2), -+ Gar—1(2). Just as we
did for X(z) we can write a filter in terms of its M-phase
components

Hi(z) = Hio(z™) + 2 Hu (™) + - 2= M=V H g (2M).

Often a multirate filter bank is written in terms of its
polyphase matrices

(Hp(2)li; = Hij(2), and  [Gp(2)]i; = Gij(z).
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Figure 1: Maximally decimated M-channel multirate filter
bank. If n of the analysis filters are simple delays, this struc-
ture reconstructs the signal from only n polyphase compo-
nents, provided the other M — n channels can be forced to
Zero.
It can be shown that the system is perfectly reconstructing
if i
GI(2) - Hy(z) =L (1)

A trivially simple solution is the case where Gg(z) =
H,(2) = I which is known as the polyphase decomposition,
since it merely separates the signal into it’s M-phase com-
ponents. In this case the i-th channel carries X;(z). This
separation will be useful since we wish to reconstruct from
some collection of n of the M-phase components. Denote
the set containing the indices of these n components by A,
and the set of the indices of the missing components by B;
clearly then AUB ={0,1,2,--- M —1}. In other words we
wish reconstruct X (z) from the X;(z),1 € A; so we want

X(2) =) Xi(="\i(2), 2

i€A

for some filters A;(z).

Consider if, instead of the straightforward polyphase de-
composition, i.e. using Hp(z) = I, we use a modified
polyphase matrix Hy(2) = (I — A), where the matrix A
has the form

aix(z) = 0,1€A (3)
ars(z) = 0,j€B. (4)
This means that row 7 of A is zero if ¢t € A, and column 5

is zero if j € B. This ensures that A2 = 0, independently
of the choice of the ai;(z), since

M-1

Z aix(z) - ak;(z) =0 Vi,j.

k=0

Thus, we can identify GX(z) = (I+A) as the in-
verse of Hp(z) = (I—-A), since (I+A) - (I-A) =
I+A-A+A%

The result of these manipulations is as follows. The anal-
ysis filters have the following form

z7t 1€A
Hi(z) = { z-;’ _ EkGA a,.'k(zM)z—k i€ B (5)

And the synthesis filters can be expressed

S Y epan(zM)F ieA
G'(Z)—{ g e ieg ©®

Notice that, while M — n of the filters on the analysis side
are modified with respect to the polyphase decomposition,
only n are changed on the synthesis side.

An example may help to clarify matters. Suppose we
choose n = 2,M = 6 and A = {0,2}; thus we wish to
reconstruct the signal from the zero-th and the second 6-
phase components, as in Figure 2 (b). The form of the
analysis polyphase matrix is then

1 0 0 0 0 O
—a10(z) 1 —a12(z) 0 0 O
0 0 1 0 0 O
HP(Z) - —630(2) 0 -—(132(2) 1 0 0 = I - A
—0.40(2) 0 —042(2') 4] 1 0
—aso(z) 0 —as2(z) 0 0 1

: (7
The analysis filters are given by Hi(z) = z~*, 1 € {0,2}
and

Hi(z) = —ai0(2®) + 27" = 27%ai2(2%) 1€ {1,3,4,5}).

The corresponding synthesis matrix GZ(z) is I+ A. The
synthesis filters are then G;(z) = z*, i € {1,3,4,5} and

Go(z) = 14 2a10(2%) + 2%a30(2°) + 2% a40(2%) + 2°as0(2°)
Ga(2) = 2% 4 2a12(2%) + 22 a32(2%) + 2tz (2%) + 2°as2(2%).

Returning to the general case, examine what (5) and (6)
imply in the filter bank shown in Figure 1. Since (1) holds
with the choice of filters above, we have perfect reconstruc-
tion. Because of (5) however, the n given polyphase com-
ponents {whose indices are in A) pass unchanged through
the analysis bank, and thus the input to synthesis filter
Gi(z) for i € A is simply X;(z™). It follows that if we can
somehow force the output of channels i € B to be zero (i.e.
Wi(z) = 0,1 € B in the figure) then we have reconstructed
the signal exactly from only the n polyphase components
i € A, using the Gi(z),1 € A as the interpolation filters.

Theorem 2.1 Let A be a set containing n of the indices
{0,1,2,---M — 1}. In order to reconstruct a signal X(z)
from the n given M-phase components X;(z),i € A it is
necessary and sufficient that there exist M — n filters H;(z)
such that

Hi(@“)X () =0, igA, Vuw, (8)

where each Hi(z) is of the form

Hi(z)=2z"" - Zagk(zM)z_k, i € A (9)

keA
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Proof: We first show that if the signal can be reconstructed
from the given M-phase components, that is written in the
form (2) for some filters X;(z), that these can always have
the form that we have assumed in (6). Consider the re-
striction that (6) implies for the polyphase componenets of
Gi(z) where i € A (the filters ¢ € B play no role in the
reconstruction (2)):

‘ _J aix(z) k€B,ieA
ka(z)—-{ 6;’]; keA,leA

Also consider the k-th polyphase component of the recon-
struction (2)

(10)

Xi(z") =) Xz (M), (11)

€A

For the components X (z) where k& € B (10) is no restric-
tion since the appropriate polyphase terms in the sum are
arbitrary. For k € A it is clear that if we use the Gix(2)
instead of the Aix(z) in (11) this gives a solution. Hence
the constrained form that we have assumed for the filters
Gi(z) poses no obstacle to the reconstruction.

Next, observe that (8) is sufficient: if each branch i € B is
zero at the output of the analysis filters, then that branch,
and that M-phase component X;(z) plays no role in the
reconstruction. However (8) is also necessary, since if the
signal is to be recovered from only the Xi(z),i € A we must

have

Z Wg(z) =0.

i€B
This implies that each of the W;(z) individually equals zero,
since (6) gives that each Wi(z) is of the form Wi(z) =
z* fi(z™) for some fi(z). That is the W;(z) are at differ-
ent phases, and no cancellation between them is possible.
Thus we must have Wi(z) = 0,4 € B which in turn gives
(8).0

To achieve reconstruction of the signal, we must con-
struct M — n filters, of the form given in (9) which satisfy
(8). In order for (8) to be satisified the spectrum of the
filter must be zero for all frequencies where the spectrum of
the signal is non-zero. Since we are dealing with discrete-
time sequences all of the spectra are 2#-periodic, so denote
that part of the region (—=, x) where X(e’*) differs from
zero by S. It follows from (8) and (9) that we must have

eI = Z aix(e’“M)e 7% ig AweS. (12)
k€A

Designing the reconstruction scheme, now involves finding
the aix(e’“™) such that this holds over the required fre-
quency bands. ‘

For a fixed i, all of the aix(e’“™) are 2x/M-periodic,
so we can fix the value of these over some set of frequen-
cies which occupies no more than 2xr/M of the frequency
axis in total; the values elsewhere will then be fixed by
periodicity. However, the constraint (12) has to be satis-
fied for all w € S, and the set S possibly contains several
frequencies seperated by integer multiples of 27 /M, whichk
may conflict with the periodicity requirement. If there were

n + 1 such frequencies in S, then the system could not
be solved, since (12), evaluated at the n + 1 frequencies,
would gives a system of # + 1 equations in n unknowns (the
aix(e??M),p = 0,1-.-n — 1). This gives one limitation
on the reconstruction: X (e’“) cannot be non-zero at more
than n frequencies separated by integer multiples of 2r /M.
Expressed another way, in the sum

M-1

Z X(ej(w+21rk/M))

k=0

no more than n terms should be non-zero for any value of
w € 5. We now show that if this is satisfied then reconstruc-
tion is always possible. Suppose that there are only = fre-
quencies separated by 2x/M; then (12) gives n equations in
n unknowns. To consider an example, in the n =2, M =6
case already introduced above with A = {0, 2} the system
is

1 e —iwa2 a.'o(ej“"’s) e—Jwoi
1 emdtwotzn/en || g (eiwos) | = | o=itwotan/e):
Whether or not the system has a solution however depends

on the sampling phases (i.e. the choice of the n indices in
the set A). In this case, the determinant is

A =e 70728 _ 1) 0.

If we choose A = {0, 3} however the determinant equals zero
and it is not possible to solve for the aix(e’“°®). Thus, even
in the simple case of n = 2 there are considerable differences
between different sampling strategies. For larger n, with
arbitrary A, determining whether (12) has a solution or not
may be difficult. For certain choices of A, a solution always
exists however. For example, take A = {0,1,2,-..n — 1}.
In this case the matrix to be inverted becomes

1 e—Jwo e~ Jwo2 e—Jwao(n—1)

1 e—Tw1 e—Jw12 ... e—Jwi{n—1)

. (13)

1 e i¥n-1  g=Jwn-12 e J@n—1(n-1)

This is easily recognised as a square Vandermonde matrix,
and is always nonsingular since the e 7“7 are distinct. We
can summarise the foregoing.

Theorem 2.2 If the signal X(e?“) is non-zero over a set S
that occupies at most n/M of the frequency spectrum, and
at no frequency in S are more than n terms in the sum
Ef{__;l X (e?9+?m*IMy non-zero, then X (') can always be
ezactly reconstructed from some set of n of its M-phase
components.

The advantage of non-uniform sampling can be shown
in the example we considered before, where X (e’) is lim-
ited to the range (—37/6, —x/6) U (x/6,37/6). Choosing
n =2, M = 6 we indeed find that the conditions of the the-
orem are satisfied and reconstruction using, for example,
the first and second 6-phase components, gives a minimum
rate sampling, while reconstruction using every third sam-
ple is not.
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Figure 2: Sampling of a discrete-time sequence. (a) Uniform sampling where every third sample is retained. (b) Nonuniform
sampling where every 6-th sample, shifted by zero and two are retained. Note that the rate is the same as in (a).

Remarks:

1. The derivation of Theorem 2.1 depended on the partic-
ular form that we chose for the polyphase matrices. All
we then did was observe that, in a perfect reconstruction
system, the conditions to recomstruct exactly from partial
information are the same as the conditions to ensure that
the rest of the information cannot contribute to the recon-
structed signal. We solved the problem for the one dimen-
sional case, but it should be clear that it works also for
multidimensional systems.

2. When n = 1 the solutions can be used to design interpo-
lators that have excellent convergence properties when used
in iterative subdivision schemes [1].

3. We demonstrated that a solution can always be found
by choosing A = {0, 1, 2,---n — 1}; this, however, may rep-
resent an undesirable solution since the samples are clus-
tered together. This may make it worthwhile exploring
other sets of indices A. Sampling schemes which also yield
Vandermonde systems will also be given by, e.g. A =
{0,2,4,---2n — 2}.

4. If X(e’“) is non-zero over a set that occupies only n/M
of the interval (—=, ), but does not satisfy the second
requirement of Theorem 2.2, it is always possible to try
n' /M z=n/M.

3 MINIMUM RATE SAMPLING OF
CONTINUOUS-TIME MULTIBAND
SIGNALS

In the last section we showed how to reconstruct discrete-
time sequence with a multiband spectrum. We can ap-
ply these results to the problem of sampling multiband
continuous-time signals. Suppose a real continuous-time
multiband signal has an overall bandwidth of B, and the
highest frequency at which it has non-zero energy is Q..
Clearly then we can uniformly sample the signal at Q, >
2. without loss. The fraction of the discrete spectrum
(—=, x) that will be occupied is B/S,. We can reconstruct

this discrete signal X,(e’“) from n of its M-phase compo-
nents if we can find n and M that satisfy Theorem 2.2. The
first constraint, that X,(e’“) should occupy no more than
n/M of the spectrum merely requires n/M > B/Q,. A con-
dition, then for sampling at the Nyquist-Landau rate, using
non-uniform periodic samples is that we can find n, M and
2, such that n/M = B/Q2, and no more than n terms in the

sum E:‘:;l X(e?“+?™/M) pe non-zero at any frequency.
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