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Abstract

If a discrete time signal z(n) is bandlimited appropri-
ately we can decimate it without aliasing. However,
there exists a broad class of non bandlimited signals
which can be recovered perfectly from their decimated
versions. In this paper we consider both uniform and
nonuniform decimation of this kind and explore some
applications, especially in noise shaping and in L-A
modulator type of architectures.

1. SAMPLING THEOREMS FROM
SUBBAND CODERS

If a sequence z(n) is bandlimited to [-7/M, n/M] we
can reconstruct it from its samples z(Mn), commonly
called the M-fold decimated version. More general
kind of bandlimited sequences (e.g., bandpass, multi-
band, ...) can also be reconstructed from uniformly
or nonuniformly sampled versions {1]. If a sequence
is not bandlimited at all in any way, can we still do
this? Sometimes yes, as the obvious example of Fig.
1.1 shows. Here z(n) is the output of an interpola-
tion filter F(z) (all terms and notations are as in [1]).
Thus z(n) = 3, y(k)f(n — kM), and usually F(z) is
a Nyquist(M) filter [1], [3], [4], that is f(Mn) = 6(n).
This means that y(n) is itself equal to z(Mn), and
we have the relation z(n) =Y, z(kM)f(n — kM). In
other words, z(n) is completely defined by the samples
z(Mn) even though it is not an ideally bandlimited
signal [unless F'(e’*) is a ideal bandlimiter].

1.1. Multiband Models

More elaborate “sampling theorems” are hidden in fil-
ter bank structures as we now demonstrate. In Fig.
1.1 we considered a signal z(n) which can be modeled
as the output of an interpolation filter (e.g., z(n) could
be a dominantly lowpass signal). Consider an £2 signal
z(n) which can be modeled in the more general man-
ner shown in Fig. 1.2(a), where y;(n) are £? signals,
L < M, and F;(z) are stable rational filters. This we
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call the multiband model because signals with multi-
band spectra (Fig. 1.2(b)) can be modeled or approx-
imated like this. Suppose we express each filter Fy(z)
in its polyphase form F(z) = Y- o 2™ Rm x(z™) [1],
[2]. Then the signal model can be redrawn as in Fig.
1.3 where Ras,.(z) is M x L. Clearly z(n) is an inter-
leaved version of the signals z;(n) indicated in the fig-
ure. In fact z;(n) = z(Mn —1), the ith polyphase com-
ponent of z(n). Suppose R(z) is an L x L submatrix of
R L (z), obtained by retaining the rows ig,41,...4,_;.

That is,
X,;oézg }’0 z
Xi (z Yi(z
. = R(z) . (1.1)

Xi[,_l(z) YL—I(Z)

If [det R(z)] is not zero anywhere on the unit circle,
then R™!(z) is stable. So we can reconstruct the L
signals y;(n) from the L signals z;, (n) in a stable (pos-
sibly noncausal) manner. This means we can recover
all the M signals z;(n) :

Xo(z Xio z
Xl:Ez; =Ry r(2)R7}(2) ilzgzg (1.2)
Xpr-1(2) X, ()

Thus the original signal X(z) = 271:4:—01 2" X, (2M) can
be recovered from the set of L sampled versions

ziy, (n)=z(Mn —14;), 0<k<L-1 (1.3)
Together, this set constitutes a nonuniformly sampled
or decimated version of x(n) as demonstrated in Fig.
1.4 for M = 5, L = 3. Summarizing, an £2 signal sat-
isfying the model of Fig. 1.2(a) can be recovered from
an (M/L)-fold nonuniformly decimated version.

The special case of Fig. 1.1 results when L = 1.
It can be verified that in this case the formula for re-
construction of z(n) from z{Mn — i) can be expressed
as shown in Fig. 1.5 where the reconstruction filter

S(z) = F(2)/R;(z™). Recall Ry(z) are the polyphase

1448



components, that is, F(z) = 21,:!:51 2R (zM). If
F(z) is Nyquist(M), there would exist an i such that
Ri(z) = 1 and we get S(z) = F(2).

1.2. Stability of Reconstruction

The stability of the reconstruction scheme is addressed
in a more elaborate manner in [5]. For example, in
the simple model of Fig. 1.1 suppose F(z) is not a
Nyquist(M) filter. Then reconstruction from x(Mn—1)
(for some fixed i) is possible only if we define the re-
construction filter to be S(z) = F(z)/Ri(zM) where
R;(z) is the ith polyphase component of F(z). Stabil-
ity of reconstruction requires that R;(z) be free from
unit circle zeros. If there exists no polyphase compo-
nent with this property, then z(n) cannot in general
be recovered in a stable manner from a uniform set
of samples like z(Mn — i). A subtle point here is that
recovery from a nonuniformly decimated version could
still be possible.

For example, it is shown in [5] that if the model fil-
ter F(z) = 1 + z — 22 + 2® then for M = 2, there is
no stable way to recover z(n) from the uniformly dec-
imated versions z(2n) or z(2n — 1). However, we can
recover z(n) from the signals z(4n — 2) and z(4n — 3)
which together constitute a 2-fold nonuniformly dec-
imated version. This reconstruction is not only sta-
ble, in fact it is FIR as shown in [5]. More generally,
it is proved in [5] that if F(z) is FIR and there ex-
ist two polyphase components Ry, (z) and Ry, (z) that
are relatively prime, then stable reconstruction from
z(2Mn —ig) and z(2Mn — iy ) is possible for appropri-
ate choice of constants 1g, 1.

2. FINDING A SIGNAL MODEL

What kind of signals can be realistically modeled as in
Fig. 1.1 or 1.2(a)? To answer this, recall the subband
coder system, where a signal z(n) is split into M bands,
and reconstructed perfectly from maximally decimated
versions (Fig. 2.1). Suppose z(n) has most of its en-
ergy concentrated in L subbands, which we number
as the first L subbands. Then the signal model Fig.
1.2(a) is a good approximation. Thus, given a signal
z(n) with energy concentrated mostly in certain sub-
bands, the problem of finding the best signal model
reduces to that of finding the filter bank that produces
the most dominant L subbands.

Orthogonal projection interpretation. Sup-
pose the filter bank is orthonormal (paraunitary) [1].
Then z(n) has the orthonormal expansion

M-1

z(n) = > > wlk)filn—kM).  (21)

=0 k

If the subbands y;(k),+ > L are discarded as being not

significant, then the result
L—1
zp(n) =D Y w(k)filn—kM)  (22)
i=0 k

is an orthogonal projection of z(n) onto the subspace
spanned by the first L filters only. Thus, we have pro-
jected a signal z(n) into a subspace such that the pro-
jection can be reconstructed from its samples. Finding
the best basis, that is, the best set of orthonormal fil-
ters {fi(n)} for a given signal (so that the error due
to approximation is minimized) is the optimal mod-
eling problem. This problem can be formulated and
solved more quantitatively, but is outside the scope of
our discussion here.

The Inverse of the Model

Consider the system of Fig. 2.2 where the signal z(n)
goes through an M-fold decimation filter H(z). As-
sume z(n) satisfies the model of Fig. 1.1. Suppose we
choose H(z) such that

H(z)F(z) ¥ 1, (2.3)
where the notation A(z) = B(z)|;m means a(n) =
b(Mn). The preceding equation therefore says that
H(z)F(z) is a Nyquist(M) filter. With this choice of
H(z) we claim that the output of Fig. 2.2 is y(n), as
indicated. That is, Fig. 2.2 acts as an inverse of Fig.
1.1. To prove this simply note that X (z) = Y (zM)F(z)
from Fig. 1.1. Thus, the output of Fig. 2.2 is

PRE

indeed. Note that if F(z) is one of the filters in an M
channel orthonormal filter bank then we simply have
H(z) = F(z) [1].

In a similar way, we can talk about an inverse of the
system Fig. 1.2(a). Fig. 2.3 shows this inverse, which
produces the signals y;(n) in response to the model sig-
nal z(n). The filters Hi(z) are related to F(z) such
that Hy(z)Fm(2)| ;s = 6(k — m). This resembles the
biorthogonality condition satisfied by perfect recon-
struction (PR) filter banks. Thus, we can imagine that
the filters in Fig. 2.3 and 1.2(a) are a subset of L anal-
ysis and synthesis filters in an M channel maximally
decimated PR filter bank.

Existence of model inverse. Given a rational
transfer function F(z), can we always construct H(z)
such that the product H(z)F(z) is Nyquist(M)? Since
we can trivially do this by letting H(z) = 1/F(z),
it is more interesting to put some constraints into
the allowed solution. For example, suppose F(z) is

Y(zM)F(z)H(z)\lM =Y (2) (F(z)H(z)
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FIR. Can we find FIR H(z) such that H(z)F(z) is
Nyquist(M)? Consider the polyphase decomposition
F(z) = M- 2iRi(zM). If the polynomials {Ri(2)}
do not have a common factor C(z), then we can indeed
find such an FIR H(z). This is because, by an exten-
sion of Euclid’s theorem there exist polynomials (FIR
filters) {E;(z)} such that ), E;(2)Ri(z) = 1. Defining
H(z) = 3, 27 Ei(zM) we then verify that H(z)F(z)
is a Nyquist(M) filter indeed. If R;(z) do have a com-
mon factor C(z) of order > 1, then F(z) has the factor
C(zM), that is, F(z)H(z) = C(2M)F1(z)H(z) which
cannot be Nyquist(M) for FIR H(z).

3. APPLICATIONS

If a signal z(n) originates at a place where sophisti-
cated signal processing is not practical, and if we know
that it can be reasonably approximated by a model like
Fig. 1.1 (more generally Fig. 1.2(a)), then we can per-
form data compression by direct decimation (nonuni-
form for the multiband model). The decimated version
can then be recovered at a “receiver end” by means of
linear filtering.

Another simple application arises when we quantize
the signal. Suppose there is a certain constraint on the
bit rate so that a direct quantization of z(n) can use
only b bits per sample. If we transmit the decimated
version z(Mn), then in principle we can use Mb bits
per sample and the reconstructed version of z(n) is
much more accurate that a b-bit version of z(n). (An
exact analysis can be done [5]). Thus, if we know that
z(n) satisfies the interpolator model, we can exploit it
for efficient use of bits.

Noise Shaping

What else can we do if we are aware that z(n) can
be reconstructed from its samples (even though not
bandlimited)? Let us take a line through the kind of
things we would do if it were ezactly bandlimited (that
is, an oversampled signal). In that case, we can do
noise shaping (as in X-A modulation) and quantize
it to very few bits, perhaps one bit. Can we do a
similar thing with a non bandlimited signal satisfying
the model of Fig. 1.1, more generally Fig. 1.2(a)?

T-A modulators. We show how to do this for
the simple case of Fig. 1.1. First assume that x(n)
is an oversampled lowpass signal, and recall how the
¥-A modulator operates (Fig. 3.1): The prefilter P(z)
would typically (though not necessarily) be a “lossy in-
tegrator”, that is, P(z) = 1/(1—az ) with0 < e < 1.
The quantizer @ would typically be a delta modulator
at the transmitter followed by a demodulator at the
receiver. Since 1/P(z) is highpass, the quantization
noise component gets shaped so that most noise en-

ergy moves to the high frequency region. The postfil-
ter T'(z) is lowpass, and therefore attenuates the noise
significantly. The “signal component” at the output is
precisely equal to z(n) if z(n) is strictly bandlimited
to /M and if T'(z) is ideal lowpass.

For the case where z(n) is not really bandlimited but
satisfies the model of Fig. 1.1 for some “reasonable”
lowpass filter F(z), how do we mimic the noise shap-
ing idea of the L-A modulator? Fig. 3.2 shows one
possibility. Instead of the lowpass filter T'(z) we have
a more elaborate multirate scheme which involves two
filters H(z) and F(z). Here F'(2) is just the model filter
(Fig. 1.1), and H(z) is the filter appearing in the model
inverse (Fig. 2.2). By the model inverse property we
see that the reconstructed signal Z(n) = z(n) in ab-
sence of the quantizer Q. This is the motivation for
replacing T(z) in the traditional X-A modulator with
the multirate cascade in Fig. 3.2. If H(z) is a good
lowpass approximation, the noise shaping idea works.
At least for the case where F(z)F(z) is Nyquist(M)
[so that H(z) = f’(z)], we know that this is the case.

The preceding structure opens up interesting re-
search problems. For example, for fixed F(z) (and
H(z)), what is the best prefilter P(z) that minimizes
the output reconstruction error (e.g., in the m.s. sense)?
What is the best stable rational (better still, FIR) P(z)
of fixed order with stable inverse that minimizes the
reconstruction error? One could address this mean-
ingfully by imposing a statistical model in Fig. 3.2,
and defining an appropriate mean square error mea-
sure. The problem can be regarded as an extension, to
the multirate case, of the half-whitening problem [6].
Details can be found in [5].
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Fig. 1.5. The reconstruction scheme.

Fig. 1.1. A signal model.
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Fig. 1.2 (a) The multiband signal model,

and (b) typical signal spectrum. Fig. 2.1. The M channel subband coder.
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Fig. 1.3. Polyphase form of Fig. 1.2(a).
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Fig. 1.4, Nonumform decimation with M=5 L- Fig. 2.3. The multiband model inverse.
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Fig. 3.1. Schematic of traditional sigma-delta modulator.
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Fig. 3.2. Schematic of new sigma-delta modulator.
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