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ABSTRACT

A second-order IIR filter is considered as the basic compo-
nent of an Adaptive Line enhancer (ALE). As a new feature,
the bandwidth of the proposed ALE is adapted simultane-
ously with the center frequency. This leads to the possibility
to combine convergence speed and accuracy. The adapta-
tion of the filter poles is controlled by a sign algorithm. The
stepsizes are chosen such that transients caused by the re-
tuning of the filter are ensured to remain much smaller in
amplitude than the response of the filter to the input signal.
When the input signal consists of a sinusoid corrupted by
wide-band noise, an accurate frequency parameter estimate
can be obtained with an algorithm given in this paper.

1. THE GENERAL ALE

Separation of a low-level sinusoid or narrow-band signal
from broad-band noise is a classical problem in the field
of signal processing. In the past a so-called Adaptive Line
Enhancer (ALE) has been introduced for this purpose by
Widrow et al. [1]. The general scheme of the ALE is de-
picted in Fig. 1. The ALE input d(k) is assumed to be the
sum of a narrow-band signal s(k), and a broad-band sig-
nal n(k). The parameters of the prediction filter Hp(z) are
adapted in such a way that the mean-squared error {mse)
E{e*(k)] is minimized. The ALE operates by virtue of the
difference between the correlation lengths of s(k) and n(k).
The delay parameter A should be chosen larger than the
correlation length of n(k), but smaller than the correlation
length of s(k). In this case, it is possible for Hp(z) to make
a A-step ahead prediction of s(k — A) based on the present
and past samples of d(k — A). However, Hp(z) will not
be able to predict n(k) from knowledge about present and
past samples of n(k — A). As a result, after the parameters
of Hp(z) have converged towards their optimal values, the
ALE output y(k) is approximately equal to s(k), and the
error signal e(k) is approximately equal to n(k).

2. THE SECOND-ORDER IIR FILTER

Often a transversal filter is used for the prediction filter, e.g.
in [1]-[4]. However, the major drawback of a transversal
filter is the large number of taps that is required to obtain
sharp bandpass characteristics. Recently, much attention
has been paid to ALEs based on second-order IIR filters,
e.g. in [5]-[10]. An IIR filter is inherently able to show
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Figure 1: The adaptive line enhancer.

sharp bandpass characteristics with only a few parameters.
The second-order IIR filter proposed in this paper is shown
in Fig. 2. The filter pole p is given by p = re’?, where r is
the pole radius (0 < r < 1), and ¢ is the pole angle (0 <
¢ < r). For r close to but smaller than 1, the pole radius r
determines the bandwidth of the prediction filter, and the
pole angle ¢ determines the center frequency. The output
y(k) of Hp(z) is composed of a weighted sum of u;(k) and
uz(k). As a consequence of the specific structure of Hp(z),
the signals u3(k) and u2(k) are orthogonal, meaning that
their cross-power Efu,(k)uz(k)] is equal to zero.
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Figure 2: The second-order IIR prediction filter, with
A(z) = 2%/(z = p)(z = p").

When we assume that ¢ is not too near the values 0
and =, and r is close to but smaller than 1, then a good
approximation of the bandwidth B of Hp(z) is given by
B = 2(1—r). In the case that the weights and ¢ are optimal
in the mse sense, and assuming that ¢ and r satisfy the
same assumptions, then the Signal to Noise Improvement
Ratio (SNIR) of the ALE can be approximated by SNIR =
1/(1 —r), see [7].
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3. THE ADAPTATION ALGORITHM

Optimization of the weights w = (w1, wy)" is a linear prob-
lem, since the filter output varies linearly with the weights.
Optimization of the filter pole p = re’® however, is a non-
linear problem. In this section, an adaptation algorithm for
both optimization problems is derived. In the analysis it
is assumed that the two adaptation processes have totally
different time constants, meaning that they operate on a
totally different time scale. In this way these processes are
approximately independent. This justifies the fact that the
adaptation processes are analyzed separately, while they
will be performed simultaneously.

3.1. Optimizing the Weights

The optimal weights w,,, are given by the Wiener-Hopf
equations, which read in matrix form w,,, = R™1P. Here,
R is the correlation matrix of u(k) = (u1(k), u2(k))* and P
is the correlation vector between d(k) and u(k). Since u1(k)
and u(k) are orthogonal, R is only non-zero on the main
diagonal. This yields a simple RLS-algorithm to adapt the
weights, given by (in the rest of this paper i = 1, 2):

Ri(k) = 6Ri(k—1)+ (1 8)ul(k), (1)
Pi(k) = 6P(k-1) +(1—0ui(k)d(k), (2)

N EIOREIORY
wk) = (——Ru(k),——Rn(k)>- (3)

Here, “stands for an estimate of the corresponding expecta-
tion.

3.2. Optimizing the Pole

In the literature, the pole radius r is usually kept constant
during the adaptation process. In (7], the bandwidth is var-
ied by increasing r in time towards its final predetermined
value. In none of the studies we know of, the pole radius is
optimized simultaneously with the pole angle.

A sign algorithm is proposed to adaptively optimize the
pole radius r and the cosine of the pole angle v = cos¢
(we adapt v instead of ¢ since this simplifies the calcula-
tion of a gradient). The motivation for the use of a sign
algorithm instead of a gradient-based method is, that the
necessary compromise between accuracy and speed is ex-
tremely difficult to make using a gradient-based method
for the optimization of the recursive parameters of a sharp
bandpass filter. Adaptation of the poles inevitably leads
to transients at the filter output. The transients are ana-
lyzed based on a state space description of Hy(z), see the
Appendix. This analysis yields stepsizes for r and v that
guarantee the transients to remain small compared to the
filter response to the input signal. We arrive at the follow-
ing optimization algorithm:

r(k+1) = r(k)— p-(k) sign (C(k)a—;(f—)) , (4)

I RO Y COLL G

with the stepsizes given by

ur(k) = e(1=r(k)), (6)
py(B) = cy(1 = r(k))sin $(k). )

Here, ¢, and c., are small constants satisfying c,, cy € %\/i
As an added advantage of the chosen algorithm, the poles
are ensured to remain within the unit circle, and thus the
filter remains always stable. If no a priori knowledge about
the frequency contents of s(k) is known, then, initially, the
pole is put on the imaginary axis (¢ = m/2) for reasons
of symmetry. This initial pole is given a small radius for
two reasons [7]. First, because with no a priori knowledge
about the frequency contents of s(k), a large bandwidth is
desired to ensure that Hp(z) “senses” s(k). Second, at the
beginning of the adaptation process a short “memory” of
the filter is desired to ensure that the incorrect initial states
of Hp(z) are “forgotten” soon.

The concept of the totally different time scales (the
weights adapt must faster than the pole) of the two adapta-
tion algorithms justifies the fact that in the following analy-
sis w = w,,, is used. The gradients de(k)/r and Be(k)/dy
are obtained by (in the rest of this paper x =7, 7)

de(k) . Ou(k) ¢y OWone
= — = —u(k)—. 8
T R O ®)
With reference to Fig. 2, we define U1(z), U2(z) and B(z)
as the z-transforms of u1(k), u2(k) and b(k), respectively.

Then, the gradients du(k)/dx can be obtained as the in-
verse z-transforms of

____aUa."gz) = 2rz'1A(z) (1 + (—l)i z—l) B(z), (9)
3U{9{£Z) — % (7 _ Tz"l) aUa;‘)((Z) . (10)

Using the Wiener-Hopf equations, we obtain for the deriva-
tives of the optimal weights with respect to the pole param-

eters
Lo LR, O
- R.’.‘ aX opt,t aX .

(11)
The derivatives 3P;/dx and dR;;/dx at sample moment k
can be estimated recursively as follows

Qwopti _ 0 [ P
ax  9x lRi

P, (k) _ ,0Pi(k-1) dui(k)
B =4 ox +(1- 0)d(k)—a—x—, (12)
AR (k) dRii(k —1) oy Qui(k)

Now the adaptation algorithm for the pole radius and angle
is given by (4)-(13).

4., A FREQUENCY ESTIMATE

In the case that s(k) is a single sinusoid, an instantaneous
estimate of its frequency o is sometimes desirable. The
pole angle ¢(k) can always be used for this purpose. A
more accurate frequency estimate can be obtained from the
two zeros on the unit circle of the notch transfer H(z) from
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d(k) to €(k). The numerator Ny (z) of H(z)is a polynomial
in 2z of degree A+1, and for A =1 its roots can explicitly be
determined. For larger values of A, an iterative procedure
must be used. As an estimate of Qq, we will calculate the
frequency w at which |Ng(e’®)|? is minimal. At the min-
imum of |Ng(e?®)|?, its derivative w.r.t. w must be equal
to zero. The following notation is used:

' [Nu(e’)|”

= = NO(k). (14)

w=w(k)

These derivatives can explicitly be derived from | Nz (e/¢)|2.

By using a first-order Taylor series approximation of N g)(k)
centered on w(k — 1), we obtain

NP k)~ NPk -1) +
{w(k) —wk-1)}INDE-—1) = 0. (15

An instantaneous estimate for o at sample moment & is
thus given by

_ N (k1)

Initially, we take w(0) = ¢(0). To avoid problems with local
minima, the calculated frequency estimate is restricted to
lie within the prediction filter bandwidth B. Therefore, in
the case that |w(k)— (k)] > 1—r(k), we reset w(k) to ¢(k).

5. EXPERIMENTAL RESULTS

The results of a single run of the first experiment are shown
in Fig. 4. The ALE input signal consists of a sinusoid with
frequency 0.5 and amplitude 1, corrupted by zero-mean,
white noise (¢2 = 1). We take A = 10, § = 0.99, and
¢r = ¢y = 0.01. Initially the pole is put on the imaginary
axis (¢(0) = =/2) for reasons of symmetry, and we take
r(0) = 0.42. Fig. 4A shows that after 3000 samples a good
frequency estimate is obtained. We notice from Fig. 4B that
the pole radius increases towards 1, in this way increasing
the SNIR. We also notice that the stepsizes become smaller
when r becomes larger, in this way increasing the accuracy.

In Fig. 5 the results of a frequency tracking experiment
are shown. Apart from the frequency of the sinusoid, all
other parameters have been taken the same as in the first ex-
periment. As can be seen from Fig. 5A, the frequency esti-
mate can track the rapid frequency changes very well. Nat-
urally, if desired, these data can always be filtered to obtain
a smoother frequency estimate. The pole angle is not ca-
pable to track the rapid changes in the frequency. Instead,
it converges towards an average frequency. In Fig. 5B, the
pole radius converges towards a certain value such that the
fluctuations of the frequency 2o remain just within the filter
bandwidth.

6. DISCUSSION

In this paper a second-order IIR filter has been considered
as the basic component of an ALE. Two separate optimiza-
tion algorithms have been derived, namely for the poles and

for two weights. During operation of the ALE, both algo-
rithms are performed simultaneously. It has been argued
that these two algorithms may still be analyzed indepen-
dently, since they are performed at totally different time
scales. The pole radius and angle are both adapted using
a sign algorithm. This sign algorithm ensures that the cu-
mulative transient caused by the permanent retuning of the
recursive parameters of the filter remains much smaller in
amplitude than the filter response to its input signal. The
results of two experiments have been shown, illustrating
the convergence behaviour and the frequency tracking be-
haviour of the ALE. It has been shown that fast frequency
tracking is possible due to the capability of the weights to
rapidly adjust the zeros on the unit circle of the notch filter
transfer. The bandwidth of the IIR filter is automatically
adjusted to the bandwidth of the undisturbed input signal.

7. APPENDIX

The second-order section A(z) can be implemented using
the direct form 2, as is shown in Fig. 3. Here, z:(k) and
z2(k) are the internal states, and d'(k) = d(k—A). When r
and ¢ are updated, then errors Az: and Az in the states
are introduced. These state errors cause a transient at the
output due to the recursive nature of the filter. This tran-
sient is now analyzed, assuming that the filter is highly
resonant (r close to 1) around the frequency of the input
sinusoid (¢ = Qo). Therefore, the state errors are mainly
determined by the sinuscidal component in d'(k) and we
may neglect the noise component. In the following tran-
sient analysis we take d'(k) = Aoe’(***¥), with Ao € R4
and ¥ a random variable uniformly distributed on the in-
terval [0, 27).

d' (k) : - b(k)
—r2 271 cos ¢
nk) L =k L

_Figure 3: A(z) implemented in the direct form 2.

We consider the transfers A;(z) and Az(z) from d'(k) to
z1(k) and z2(k), respectively. The state errors are caused
by the changes Ar and A¢ in r and ¢ according to

Az; = —Re { [Aqsa’;‘iz) +Ara‘\a‘r(z)] Aoef"’}.
z=el® (17)

The state errors Az; and Az, are the initial conditions
t(—1) and t(—2) for the transient ¢(k), ¥k = 0,1,---. At each
iteration step a new transient is introduced. We require that
this total transient is much smaller than the filter response
to d'(k). Further analysis yields for the upper bound of the
relative transient

Doreo [1(K)] W 7oy e
A:|A(ei¢)| < =2 (Ar)2 + (rAg)?. (18)
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Figure 4: The convergence behaviour of the ALE
parameters. A. The pole angle and frequency
estimate; B. The pole radius.

By requiring that the right-hand side of (18) is much smaller
than 1, the total transient is guaranteed to remain much
smaller than the response to d’(k). Therefore, we choose Ar
and A¢ to be equal to c.(1—7)° and c4(1—7)?, respectively,
with ¢r,ce € %\/2- Since we update ¥ = cos ¢ instead of ¢
we use Ay = c4(1 — r)?sin ¢(k), with ¢y = cq.

{1

[4]
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