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ABSTRACT

The recursive least squares (RLS) algorithm with exponen-
tial forgetting (ARLS) is perhaps the best known and most
widely used algorithm for tracking the time varying param-
eters of a linear regression model. The implicit assumption
in using the ARLS algorithm is that the information is uni-
formly distributed over the time horizon. Frequently this
assumption does not hold and serious difficulties can be
encountered when using many model structures. These in-
clude convergence of the parameters to local system or noise
characteristics and output bursting, i.e. a large error when
the operating point changes. In this paper several simple
alternatives to the standard ARLS algorithm are proposed.
The proposed algorithms extend the idea of a sliding win-
dow by quantising the whole input space.These algorithms
considerably reduce the risk of forgetting useful information
and eliminate the possibility of output bursting by relating
the adaptation capabilities of the algorithm to the amount
of input stimulation. Simulation results confirm the efficacy
of our approach.

1. Introduction

The problem of tracking a time varying system consists of
specifying suitable model structures and the development of
parameter estimation algorithms which can track the model
parameters in a suitable fashion. Due to increases in low
cost computational power and memory, the ARLS [1] [2]
algorithm has become an attractive alternative to the pop-
ular least mean squares LMS algorithm. Under certain
conditions the ARLS algorithm offers fast convergence to
the optimal parameter set for linear regression structures.
Examples of such model structures include standard lin-
ear models, NARMAX models {3], polynomial models, and
radial basis function (RBF) networks with predetermined
hidden layer parameters [4]. The ARLS algorithm is

8(t) = 8(t — 1) + P(t)¥(t)e(2),
e(t) = y(t) — 87(t - 1)y(2), (1)
PO~ =2P(t— 1) + g()p(t)”
where ¢ is the prediction error, P is the update gain matrix,

¥ is the vector of regressors, and 8 is the vector of model
parameters. The term A is called the forgetting factor. It

*Also member of DSP group, University College Dublin,
Belfield, Dublin 4, Ireland

tMember of DSP group, Belfield, Dublin 4, University College
Dublin, Ireland

0-7803-2431-5/95 $4.00 © 1995 |EEE

is used to discard old information. With A equal to 1 no
information is lost.

Unfortunately the ARLS algorithm will only work well
subject to certain assumptions. The most important of
these are that older data is in some sense less reliable than
more recent data. This is exactly the case if the system de-
pends on the system state. If this assumption is not valid
and the model structure is non-local, i.e. linear models,
RBF’s with wide basis functions, then serious problems can
be encountered. These include convergence to local system
behaviour due to local input signal excitation and burst-
ing due to an exponential growing of the P matrix, i.e. a
sudden output burst due to change in operating point [3]..
These problems have been considered for the case of linear
systems from the point of view of adapting the standard
ARLS algorithm [6] [7] [8] [9] [10], and by [4] for the RBF
structure.

In this paper we propose a number of algorithms which
conceptually reduce the risk of forgetting useful information
by retaining stimuli from across the input space. Essentially
this means that the restriction on the shape of the window
of past values is relaxed. These algorithms also eliminate
the possibility of output bursting.

2. Definitions and Basic Assumptions

In the following discussion the system being modelled is
referred to as the non-linearity. The class of systems con-
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Figure 1: Modelling approach

sidered is depicted in figure 1. All feedback variables are
assumed to be known and the space consisting of the exter-
nal inputs and feedback outputs is termed the input space.
A uniformly exciting input signal is defined to be an in-
put signal capable of exciting all regions of the input space
that have been modelled. It is recognised that when using
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the ARLS algorithm the nature of the input signal is of the
utmost importance. Even when the non-linearity is time
invariant the standard ARLS algorithm can fail if the input
signal is not uniformly exciting. In this paper the most gen-
eral case of a time varying non-linearity with non-uniform
excitation is considered. In order to develop a solution to
the problem the following assumptions are made:

o The non-linearity is modelled using a linear regression
model,

Y = A4, (2)
where Y is a Lx1 vector of system outputs, 8 is the
K'x1 parameter vector and A is a matrix whose rows
consist of each regressor vector.

o It is assumed that the model structure is sufficiently
complex and general to capture the changing non-
linearity.

e [t is also assumed that the time changes of the system
are slow, i.e., the changes in the system are much
slower than the excitation of the input space. This
effectively ensures the time varying parameters are of
a type which can be tracked.

3. Proposed Algorithms

In this section two approaches for the least squares fitting
of a data set to a given model are proposed. These are
motivated by the desire to restrict the amount of forgetting
by relating the adaptive capabilities to the degree of system
excitation, i.e, only forget in areas where new information
is arriving.

3.1 Regionalised fitting algorithm

In developing this algorithm it is recognised that if at each
time step enough information exists concerning the overall
state of the system then the parameter set could be esti-
mated using

o(k) = ATY, (3)
where (k) is the estimated parameter set at time k, A™ the
pseudoinverse of the regressor matrix, and Y is a matrix of
system outputs. In the sequel B denotes a learning rate
parameter. We propose a general algorithm, consisting of
an output and input adaptation phase, as follows:

e Initialisation Phase:
1. Vector quantise the input space to form a set ot
input space representatives (ISR).
2. Select an initial output for each ISR.

o Adaptation Phase:

1. At each time step update the ISR (r:) nearest
to the input vector. Use the current output to
update the output associated with the ¢’th rep-
resentative

2. Use all representatives to calculate A and Y in
equation 3.

3. Calculate #(k) using equation 3
How the input space representatives and their associated

outputs are updated determines the plasticity and robust-
ness of the algorithm.

3.1.1 ISR Output Adaptation

Two methodes for updating the outputs associated with
each representative were investigated.

1. Local exponential forgetting of ISR outputs
The representative outputs are given by

gi(k) = B:(k — 1) + (1 - B)y(k), (4)

where §:(k) denotes the output associated with ISR
i+ at time ¢ = k and y(k) denotes the most recent
measurement. Note # = 1 corresponds to output
replacement.

2. Local windowing

In this case a window in time of size M i$ created for
each representative. At each time step the current
output replaces the output M time steps in the past.
The output representative is then given by

1 M
#(K) = 37 2wy (5)

Local windowing is robust with respect to noise but is not
as elastic as local exponential forgetting.

3.1.2 Adaptation of ISR locations

Two strategies for updating the locations of the input space
representatives at each time step were investigated.

1. Flized representatives
The representatives remain fixed. This technique is
advantageous since only the Y vector in equation 3
needs to be updated.

2. Local windowing of ISR Locations

In this case the representatives are updated according
to

Ak =37 D5, (6)

3. Local Ezponential Forgetting of ISR locations

In this case the representatives are updated according
to,

7i(k) = Bri(k — 1) + (1 = B)(=(k) — 7i(k - 1)), (7)

where the 7; denotes the i’th input space representa-
tive and z(k) is the input closest to representative 1
at time t = k.

The local forgetting algorithm results in a more elasic struc-
ture. However care shold be paid to ensure that the repre-
sentatives do not drift toward one part of the input space.
In this case the development of a more sophisticated adap-
tation algorithm may be neccessary. Also when using a
local windowing technique with exponential forgetting of
the ISR locations/outputs, particular care should be taken
to assign correct learning rates.
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3.1.3 Adding new represantitives

In the case where the need to introduce new representatives
arises, this can be accomplished by replacing the represen-
tative which was not been updated for the longest time in-
terval with the new representative. Robustness with respect
to noise can be achieved by only inserting the representa-
tive point into the regressor after it has a certain number
of data points associated with it.

3.2 Regionalised ARLS Algorithm

In this section a variant on the standard ARLS algorithm
is presented. The basic idea is to restrict the amount of
forgetting by decomposing the P! matrix into a number
of submatrices as follows

P'=al+) B (8)

Each of the matrices B; are associated with a region of the
input space. At each time step only the B; associated with
the current input vector is updated according to

Bi(k) = ABi(k — 1) + ¥(k)v(k)T, (9)

thus ensuring that only the part of the P matrix associated
with the current innovation is updated. This has the effect
of slowing the rate of adaptation if the input signal spends
any amount of time in a local region. Bursting is avoided
by ensuring that the P~! converges to Z1.

In addition the local P matrix is available at any time.
Note that equation 8 cam be written in terms of P and
solved recursively. Partitioning the P matrix corresponds
to quantising the error space over which the least squares
optimisation is carried out. It should also be noted that
equation 8 is proposed as an alternative for determining the
parameters of a global model. It offers no advantage over a
true local structure (RBF) with local learning [11]. Similar
ideas termed ”directional forgetting” have been presented
in [8] [9] [10].

4. Examples

Results demonstrate that the algorithms presented above
significantly reduce the risk of forgetting useful information.
Furthermore the algorithms retain their ability to adapt by
relating adaptation to input space excitation.
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Figure 2: Input signal and non-linearity
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Figure 3: RBF trained with ARLS (A = 0.99). A) Output
after 500 samples, B) Output after 1500 samples.

4.1 Example 1

The effect of using a ARLS trained RBF network to learn
a non-linearity is shown in figure 3. The non-linearity is
described by

y=(z - 0.5)* + v, (10)
where v is uniform white noise U(—90.1,0.1) and the out-
put was normalised to lie in the interval (0,1). The input
is uniformly exciting white noise for the first 500 samples
and local for the next 1000 samples. The input signal and
non-linearity are shown in figure 2. The RBF network had
5 units. The same network was trained using a fixed repre-
sentative mesh (2 per basis function) and equation 6 used
to adapt the output assigned to each input representative.
The resulting network outputs can be seen in figure 4 to be
more robust with respect to information forgetting.

RBF output RBF output
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Figure 4: RBF trained with proposed algorithm. A) Output
after 500 samples, B) Output after 1500 samples.

4.2 Example 2

In this example the regionalised ARLS algorithm was used
to fit a linear model of the form

§(k + 1) = 01y(k) + 62u(k), (11)
to data generated by,
y(k + 1) = 0.35y(k) + u(k) + 0.25u(k)* + v, (12)

where vis U(—0.1,0.1). The input signal u is uniform white
noise and is depicted in figure 5.

For simulation purposes the P matrix was partitioned
into 4 submatrices defined uniformly over the space defined
by the external input u.
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External Input

Pigure 5: Input signal for example 2

Standard RLS RLS with regional forgetting
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Figure 6: Evolution of 9.

The parameter set determined off-line using all the data
yielded a model of the form

§(k + 1) = 0.4733y(k) + 0.9897u(k). (13)

This parameter set is optimal in the sense that it yields
the best linear model given all of the data. Application of
the standard ARLS algorithm with A = 0.98 yielded at the
2000’th sample a model of the form,

§(k + 1) = 0.3435y(k) + 1.3461u(k), (14)
whereas the regionalised version of the algorithm yielded,
§(k +1) = 0.4951y(k) + 1.0353u(k), (15)

thus clearly demonstrating the robustness of the algorithm.
The ARLS algorithm has converged to local uncertainty and
the noise characteristics. This effect can be dangerous as it
can lead to large prediction errors. It should be noted that
the regionalised ARLS algorithm offers a conceptually sim-
ple alternative to the algorithms proposed in [9] [10]. For
some applications the memory burden of the above algo-
rithm may be great.

5. Conclusions

Several algortihms for the robust tracking of the parame-
ters of a linear regression model have been presented in this
paper. The authors suggest replacing the recursive least
square algorithm with exponential forgetting, with recur-
sive pseudoinverse algorithms. Clearly in many applica-
tions this is a possible since the main motivation for using
the ARLS algorithm, i.e. limited memory, no longer ap-
plies. Within this framework various adaptation strategies
can be applied, some of which are outlined above.
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