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ABSTRACT

A detailed analysis of the QR-RLS algorithm in finite
and infinite precision implementations is presented, em-
phasizing the case where the input signal samples are
correlated. The expressions for the mean square val-
ues of all internal variables in steady state are first
derived. These expressions are key to determine the
dynamic range of the internal signals, and to derive
the analytical expressions for the mean square values
of the deviations in the output variables of the algo-
rithm in finite wordlength implementations. Previous
works address this problem considering the input sig-
nal a white noise, a situation not so often encountered
in practice. The accuracy of all analytical results are
verified through a number of computer simulations.

1. INTRODUCTION

The recursive least squares (RLS) algorithms for FIR
adaptive filtering are particularly attractive due to their
fast convergence, specially for correlated input signals.
The RLS algorithm based on the QR decomposition
(QR-RLS) is one of the most attractive due to its nu-
merical stability {1]-[4], and systolic array implementa-
tion [5].

For uncorrelated input signals the mean square val-
ues of the internal variables of the Conventional QR-
RLS algorithm was derived in [2], [6]. A set of relations,
for calculating the mean square values of deviations
in the adaptive filter outputs when implemented with
fixed-point arithmetic was recently presented in [4].

This paper extends these results for correlated input
signals. As will be shown the results for correlated
inputs are quite different from the results of [2], [4]
for uncorrelated input signals. The accuracy of the
derived relations are verified through some computer
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simulations.

2. QR-RLS ALGORITHM

The algorithm analysed in this paper is the conven-
tional QR-RLS algorithm described as follows:

Matricial Formulation: Fori=20,---,N, do
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where (k) is the input signal vector, d(k) is the refer-
ence signal, and e(k) is the error signal.

The quantities a; j(k) and b;(k) not explicitly shown,
represent intermediate values that appear in equations
(4) and (7) respectively.

3. SOME USEFUL RELATIONS

In the present section, a number of known relations,
that are also valid for the analysis of the QR-RLS al-
gorithm with colored input signals, are listed for con-
venience. The relations are:

E{ad,(k)} = o ©)
forj=0,1,.---, N.
Bla (B} = (1- NE@L®}  (10)
Blul (k= 1)}
Eud by (1)
E{a};(k)} 1 _
Bl ) ST (12)

An important relation is the definition of the inter-
mediate variable a; ;j(k) given by
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Another recurrence that is frequently computed in

the QR-RLS algorithm is

O e O
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where u; ;(k) are the elements of the matrix U(k).

4. ANALYSIS FOR COLORED INPUTS

In this section are derived the mean square value of
several quantities related to the QR-RLS algorithm,
namely u; j(k), a;;(k), da2,i(k), bi(k) and e,(k). The
analysis is based on the assumption that the input
signal is a non-white stationary random signal where
r(j) = E{z(d)z(i — j)}. The results presented here
generalizes the ones presented for uncorrelated inputs.

A first assumption assumed throughout, that was
confirmed in the simulation results, is that the mean

square value of cosf;(k), sinf;(k) are given by (11)
and (12), respectively. Also the square values of the
cosines and sines were considered independent of the
remaining quantities of the algorithm [6]. Using these
assumptions and from (14), one can easily show that

E{ai ;(k)a;;(k)}
P (15)

E{u; j(k)uii(k)} =

for i # j.

After some tedious calculations we concluded that
E{u;j(k)aii(k)} is small as’ compared with
E{u;j(k)uii(k)} and E{a;;(k)aii(k)}, for any i, j,
and I Also assuming that wu;;(k)u;;(k) and
a; j(k)a; ;(k) are statistically independent, and employ-
ing the result of (15), it can be shown that

1 2
e {ai; (K)}

22 E*aij(k)aii(k)}
(1=2%)  E{af,(k)}
The mean square value of the intermediate variable

a; j(k) can be derived using the assumptions discussed
so far, with the result being as follows

E{“?](k)} ~

(16)

Efa};(0)} =~ AM1=-XE{ul,;(k-1)}
+ AE{a}_,;(k)}
= 2AE{ai_y,j(k)ai-1,i-1(k)}
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(17)

In order to obtain a closed form solution for the
equations (16) and (17) above, the following result is
required

E{a; j(k)aii(k)} =~ 2A(1 — k) E{ai—1,i(k)a;-1,;(k)}
(18)

where o2 is the variance of the input signal and « =
r—%l. The equation above can be solved iteratively us-
ing the following relation as starting point
r(l), ,. .
Efayj(k)ari(k)} = 201 = —55)r(G —1)  (19)
x
With the results described above, we can derive the
mean square values of the internal quantities for cor-
related inputs, by following the calculation procedure
described below
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Initialization
2
0-27
For j =0,...,N,do
E{a} ;(k)} = o3 (21)
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Fori=1,..,N,do
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E{a?,j(k)} ~
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+ AE{al;()}
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(1= 22)E{aZ;(k)}

The expressions of E{J%,(k)} and E{b? |(k)} for
uncorrelated inputs, given respectively by equations
(26) and (27), remain valid for correlated inputs. A
key result to show it, is the fact that E{u; j(k)u;:(k)},
for j # | is small as compared with E{uf;(k)}. The
proofs are omitted for the sake of brevity.

N
E{d}(k)} ~ ) E{ul;(F)}E{wj(k)} (26)

ji=i
1+1 o N
E{b711(k)} =~ Z/\"”z(l—/\)E{d%,j(k)}
+ XNHE{d*(k)} (27)

Simulations were performed to show the accuracy
of the proposed formulas. A colored input sequence
z(k) was generated by the following operation z(k) =
g(k) * h(k) + v(k), where h(k) is a sequence defined by
h(k) = {0.5 + 0.5 cos(2w/W),1,0.5 4 0.5 cos(27/ W)},
g(k) is a polar sequence with g(k) = £0.01 and v(k)
is white gaussian noise with zero mean and variance
o2 = —30 dB. By choosing the appropriate values for
W, it is possible to control the eigenvalue spread X (R)
of the input sequence z(k) [1]. Some of the obtained
values for the mean square values of u; j(k) are shown
on tables 1 and 2. The simulations used A = 0.99, 5000
samples and an average over 5 experiments.

5. MEAN SQUARED VALUES OF
DEVIATIONS IN THE INTERNAL
VARIABLES

In order to generate analytical expressions for the ex-
cess of of mean square error, and for the variance of
the deviation in the tap coefficients of the adaptive fil-
ter due to quantization, it is necessary to analyse the
propagation of the quantization errors and to derive
the mean square values of the deviations in all internal
variables. Both tasks were previouly performed for the
QR-RLS algorithm with white input signal [4], [7]. The
results presented in [4] and [7] are also approximately
valid for non-white input signals, if the same simplify-
ing assumptions discussed in [7] are made. Therefore,
by applying the results of the infinite precision anal-
ysis for non-white inputs to the expressions obtained
through the propagation analysis, we obtain good es-
timates for the mean square errors in the internal and
external variables of the QR-RLS algorithm. In order
to verify these results, an identification problem was
simulated using as input signal the colored noise de-
scribed in the simulations of the previous section. The
quantiy of interest is the excess of mean square error
caused by finite precision implementation. The results
obtained from simulations and from the proposed anal-
ysis are shown in tables 3 and 4. As can be seen, the
expressions proposed are in close agreement with the
simulation results.

6. CONCLUDING REMARKS

In this paper, we have presented a set of relations that
predicts the mean square value of the internal variables
of the conventional QR-RLS algorithm, when the input
signal is a colored noise. With the new presented re-
sults, the previous solutions proposed for white noise
inputs fall within this framework.

The proposed relations are key to predict the finite

1430



wordlength effects in the actual algorithm implemen-
tation, and to calculate the dynamic range of each in-
ternal variable of the algorithm. From another point
of view, these relations allow the designer of an ap-
plication specific hardware to determine the required
wordlength such that the algorithm meets prescribed
specifications, such as limited excess of mean square
error due to quantization effects.

The expressions proposed for the mean square val-
ues of the internal variables were shown to be very ac-
curate through simulation results.
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Table 1: E{u?;(k)} with colored noise input.

o(e? o l| ] X(R) = 6.08 1T X(R) = 11.12

i [ Sim. (dB) “ Calc. (dB) |] Sim. (dB) ][ Calc. (dB) |
E{uj 4(k)} -19.3 -19.6 -19.1 -19.4
E{ug (k)} -28.1 -27.4 -26.0 -35.6
B{x] (k) -40.0 -41.2 -38.8 -39.5
E{u] (k)} -41.4 -42.6 -41.2 -42.4
E{x] ,(*)} -19.9 -18.8 -20.0 -18.2
E{s] ,(k)} -27.9 -36.7 -28.7 -24.4
E{wf (k) -40.8 -41.0 -38.8 -39.0

Table 2: E{u?;(k)} with colored noise input.

T AX(R) = 27.71 I} X(R) = 46.82
E{u?‘j(k)} h Sim. (aB) [[ Calc. (dB) || Sim. (4B) ][ Cale. (dB)J

E{uglo(k)) -18.8 -19.1 -18.5 -18.9
E{ug,l(k)} ~24.7 -24.2 -23.5 .23.3
E{uozﬂ(k)} -37.2 -37.8 .35.0 -36.2
E{ug‘s(k)} -40.0 S42.1 -39.0 -41.8
E(uf‘l(k)} -20.1 -17.3 -20.2 -16.9
E(u? L00)} -24.2 -22.7 -23.0 -21.3
E{u? 509} -36.9 -36.8 -34.5 -34.7

Table 3: E{[Ae(k)]?} with colored noise input (24
bits).

[Z(R) || Sim. (dB) [ Calc. (dB) |

6.08 -137.7 -138.2
11.12 -136.2 -136.8
27.71 -135.9 -136.7
46.82 -135.5 -136.7

Table 4: E{[Ae(k)]?} with colored noise input (15
bits).

X(R) [ Sim. (dB) | Calc. (dB) |

6.08 -83.1 -84.0
11.12 -82.2 -83.1
27.71 -81.8 -82.7
46.82 -80.9 -81.7
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