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ABSTRACT

In many adaptive signal processing applications, it is often desired
to impose linear and quadratic constraints on the adaptive filter
weights in order to meet certain performance criteria. This paper
presents a modification of the well known adaptive RLS or FLS
algorithm to achieve this. By way of illustration, the paper
considers an adaptive narrowband beamformer with first and
second order spatial derivative constraints. The performance of
the algorithm is studied via computer simulations.

1. INTRODUCTION

In antenna array processing it is often required to minimise the
array processor mean output power subject to a fixed response in
the array look direction [1]. The look direction requirement can be
met by imposing a set of linear constraints on the processor
weights to yield what is known as the Linearly Constrained
Minimum Variance (LCMV) processor. It has been found,
however, that LCMV processors are susceptible to errors in the
assumed direction of arrival of the desired signal. To achieve
robustness against directional mismatch, additional constraints
known as derivative constraints can be introduced. These
constraints force the first and second order spatial derivatives of
the array power response in the look direction to zero [2].
However derivative constraints corresponding to necessary and
sufficient conditions for these spatial derivatives to be zero are in
general quadratic, and the resulting weight vector solution space
is non-convex [3]. The past approach to this complex problem has
been to consider conditions which are only sufficient for the
spatial derivatives to be zero. Whilst this results in linear
constraints, it nevertheless exhibits certain anomalous behaviour,
e.g. dependence on the choice of array phase centre [4].

In (3], a method for solving the non-convex output power
minimisation problem with quadratic derivative constraints is
presented. However, the problem solved in [3] is an optimisation
problem which assumes that the signal autocorrelation matrix R is
known. In practice R must be estimated from the receiver data. In
this paper, we present an adaptive algorithm for determining the
optimum weight, in the least squares sense, from measured data.
This algorithm is essentially the well-known adaptive Recursive
Least Squares (RLS) filter [S) but satisfying also linear and
quadratic constraints.

Although this paper deals only with a narrowband planar array
operating in 2D space, the technique developed herein can be
easily extended to 3D space operation as well as broadband array
processor applications.
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2. SECOND ORDER OPTIMUM DERIVATIVE
CONSTRAINED ARRAY PROCESSORS

In order that a narrowband array processor have a first and second
order maximally flat spatial power response in the look direction
8, . it can be shown that [6], in a 2D scenario, the following non-

Linear optimisation problem results.
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where the array consists of L elements, P(w,) is the mean output
power, w, ecl is the complex weight vector, s(8,) ect is the
steering vector for the look direction §=8,, 5(8,)ec’ and
55(8,)ect are, respectively, the first and second order
derivatives of the steering vector wrt 6 evaluated at =6, and
R, e c“*L is the complex input signal correlation matrix.

Equation (2) corresponds to the look direction constraint while
(3) and (4) correspond to the additional first and second order
derivative constraints.

3. TRANSFORMATION TO A TWO STAGE
MINIMISATION PROBLEM

Noting that the terms [Re(sé’ (6,)w, )] and [Im(sf’ (6,)w, )] in (4)

are scalars and making the assignment
[Im(slﬂ (Go)wc)] = and [Re(s{’ (Bo)wc)] =—a? (5)

where ae® is some unspecified scalar, it can be shown
[3], [6] that the quadratically constrained optimisation problem of
(1) to (4) can be re-formulated as a two-stage minimisation
problem where the first stage is a linearly constrained
optimisation problem, parameterised by o, and the second-stage
is an unconstrained optimisation of ¢ :

min

min w! Rw
o3 w

©

subjectto  CTw= h(cx)

where C e M is a stacked constraint matrix formed from ),
(3) and (5), h(a)exMis the corresponding constraint vector,
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For time-varying polynomial coefficients, as encountered in many
adaptive signal processing applications, the coefficients and roots
often do not change by large amounts from one sampling instant to
the next. Since global methods such as (14) exhibit fast
convergence in the vicinity of the actual roots it is an obvious
advantage to initialise the root-finding algorithm each time with
the previous root estimates. However to ensure convergence of the
algorithm to the actual roots a small, artificial complex component
is added to one of the previous root estimates before the algorithm
is started. This serves to destroy any symmetry about the real axis
that may exist in the initial guesses [11], [12]. The existence of
such symmetry will prevent the algorithm from finding the actual
roots in the following two situations: (i) the initial root estimates
are all real whereas two of the actual roots occur in complex
conjugate pairs; and (ii) two of the initial root estimates occur in a
complex conjugate pair whereas all of the actual roots are real.

The adaptive RLS filter with linear and quadratic constraints is
summarised in Table 1.

Note that the algorithm requires R(n) to be updated (see (15.2)).
Note also that in Step 3, we use the stabilised RLS algorithm of
[13]. We could have also use the stabilised FLS algorithm of [14].
The salient feature of the algorithm presented in [8] is that it
incorporates a self-correction for Q(n) which ensures that the
constraints are satisfied at each iteration. This is important in a
finite precision environment where round-off error can cause the
weight vector solution to drift out of the constraint space.

5. NUMERICAL STUDIES

The following sunulation results were obtained using the
algorithm as it is presented in equations (15.1) to (15.9).

The simulation scenario assumes a narrowband, uniformly
distributed 5-element circular array with the phase centre located
at the centre of the circle and one element positioned on the
positive y-axis. The circle radius was set at two wavelengths. A
6dB random Gaussian source was located at 30° from the x-axis
and the look direction was set at 105°. The element self-noise is
-30 dB. The data correlation matrix was initialised with § =10 in
equation (15.1) and the forgetting factor was set to A =0.99.

The learning curve for the derivative constrained adaptive array
processor averaged over 100 separate runs is displayed in Fig. 1.
Note that the output power converges to the optimum value of
-33.26 dB which can be found from the corresponding optimum
processor. Note also that the algorithm does not exhibit numerical
instabilities.

For comparison, the learning curve of the array processor subject
to the “sufficient” linear derivative constraints is also shown in
Fig. 1 (upper plot). These results were obtained using the same
simulation scenario and input data as above. Note that this
processor converges to a higher output power (-23.219 dB).

Fig. 2 shows the trajectories taken by the roots of the polynomial

Initialise
R(O) = 5 X IZL
RN 0)=6""x1Iy,
5<<0.0l02 and I, is a 2L x 2L Identity Matrix (5.1
-1
0(0)= R (0)C(CTR™(0)C)
For each new data sample x(n) at time n:
1. Update R:
R(n)= AR(n—1)+(1- A)x(n)x” (n) (15.2)
2. Compute the adaptation gain vector:
R(n-1
gln)= (n-Lyx(n) (15.3)

(4= 2))+x" (R (n-1)x(n)

3. Update R™(n) with the stabilised RLS algorithm of [13].
Update the matrix Q(n):

u(n)=CTg(n) (15.4)
vIn)= xT(n)Q(.n -1) (i5.5)
VN PO u(n)y’ (n)
Q'(n)=[Q(n-1)- glny (n>][1,, +——-1_v,(n)u(n)] (15.6)
-1
Q)= (n-1)+C(c7C) [1y - €7@ (n-1) 157
5. Compute the matrix I'(n):
-1
r(n)=(c"c) cTRmQ(n) 155

6. Compute the coefficients of the polynomial P’(cx)= diP(a)
o

from the elements of I'{n).

7. Update the roots of P’(cx) using (14) to identify the o that
minimises P(c¢r). Denote this & as Loy (n)

8. Compute the weight vector

w(n) = Q(n)h{ct s (n)) (15.9)

Table 1. Quadratically Constrained RLS Filter

P’(cr) as the root-finding algorithm of (14) converges. The plot
was obtained from one of the simulation runs at n = 1 where no
previous root estimates were available. The initial guesses in this
case were chosen to be
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weR>L is the weight vector, Re 8 2L%L is the real signal
correlation matrix and M is the number of resulting linear
constraints.

Note that in the minimisation problem (6), we have made use of
the real signal representation of [7].

Using the method of Lagrange multipliers, the inner stage of the
two-stage minimisation problem (6) has solution

Wopr (@) = R™'C(CTR™'C)  h(ar) %

Note the optimum ¢ is yet to be determined.

The outer stage of the two-stage minimisation problem of (6) is
now given by

min P(a) = 7 (@)\CTR™C)” () ®)

1t can be verified that P(«) is a quartic polynomial in @ [6]. Thus
given R™! and C the optimum ¢ can be found by computing the
roots of a cubic polynomial.

Substituting the optimum ¢ into (7) and (8) gives finally the
optimum weight vector W and output power Popt

4. ADAPTIVE ALGORITHM

Clearly in a real-time implementation, R™! is not known a priori
and must be estimated. In (8] an adaptive algorithm is presented
for solving a linearly constrained power minimisation problem. A
recursive update was given for estimating the matrix

-1
R'IC(CT R"IC) (see (7) above) which was referred to as Q(n).

The key to solving the two-stage minimisation problem, however,
-1

is in obtaining an estimate of the matrix (CTR'IC) . It is from

this estimate the optimum ¢« is found from (8).

-1
Pre-multiplying Q(n) by R(r) and (CTC) €T gives

r(m=(c’c ) 'CTR()O(n)
=

c’c) TR n)[ “m)e(cTR (mC) ] )
[ CTR\(n )C ]

The matrix (CTC) CT is known a priori and can be pre-

computed. In contrast, the correlation matrix R(n)e g 2L%2L jg

unknown a priori and can be estimated using the standard
exponentially weighted update [5]

R(n) = AR(n-1)+(1- )x(n)x7 (n) (10)

where x(n) e %2 is the real input signal vector [7] and A is the
forgetting factor, usually chosen so that 0 << A <1,

The matrix I'(n) thus determined can now be used in (8) to find

the coefficients of the quartic polynomial in o. To find the
optimum alpha o, (n) at time n the zeros of the first derivative
of P(ex) wrt & need to be found. This can be done using
conventional factorisation algorithms, eg. Mullers method [9], or,
since P’(«x) is only a third order polynomial an exact closed-form
solution may be used. However, for higher order polynomials
which may be encountered for example in broadband array
processors, the conventional techniques have some shortcomings
[10]: (i) each zero of the polynomial must be estimated to the
required accuracy using a separate iterative process, (ii) the
process of deflation used in these techniques is prone to numerical
inaccuracies from round-off error accumulation, and (iii) for slight
changes in the polynomial coefficients the entire factorisation
process needs to be re-started.

Consequently, techniques known as global methods [10], [11]
which determine all the zeros of a polynomial simultaneously
using an iterative process have been developed. There are a
number of global methods available offering different convergence
properties and degrees of computational complexity. The third
order global method, described briefly below, was used in the
computer studies which follow in Section 5.

Consider the general rth order complex valued polynomial in z,
11)

where g;,z€C. Let 1;€C,j=12,...,r, be the actual zeroes of
f(z) and successive approximations to these zeros be represented
by (k). A;(k +1),... with initial guesses 1;(0),j =12.....r

r-1

f@)=7"+az"" + +a,_jz+a,

Define the functions
Ak
x:()l.j(k))=—f( 4)

(12
7(3,0) ’

r

and (4,00)= Y 1

i=Li#j ()'j () -4; (k))

The third order global method updates the root estimates at time n
by

(13)

u{A,(k-1)
1-T(A;(k-1)u(A;(k-1))

j=12,..r

The determination of the roots of P’(«r) using this algorithm, then,

is a two stage process: (i) as new input data arrives update the
coefficients of P’(ex) using the matrix I'(n), then (ii) iterate (14)
until the desired accuracy is reached.
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Note that the algorithm converges to the values
{-0.00085, - 7.65946, 7.65501} in 8 iterations. If good initial
guesses are provided, as is the case for n > 1 when a set of
previous root estimates is available, then the algorithm typically
converges in only two or three iterations.
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Figure 2. Trajectories taken by the roots on the complex plane as
the global root finding algorithm converges.

6. CONCLUSIONS

This paper has formulated an adaptive RLS algorithm with linear
and quadratic constraints. The algorithm allows an adaptive array
processor with 1st and 2nd order NS derivative constraints to be
implemented. This array processor overcomes some of the
shortcomings evident in array processors constrained by the
“sufficient” linear derivative constraints.

The authors note that as the update for Q(n) is still essentially a

variant of the RLS algorithm, it can suffer from numerical
instability problems when implemented in finite precision
arithmetic [5], [13]. The authors are currently investigating
techniques for improving the numerical stability of Q(n).
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