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ABSTRACT

In this paper a highly modular normalized adaptive
lattice algorithm for multichannel Least Squares FIR
filtering and multivariable system identification, is pre-
sented. Multichannel filters with different number of
delay elements per input channel are allowed. The
main features of the proposed multichannel adaptive
lattice least squares algorithm is the use of scalar only
operations, multiplications/divisions and square roots,
and the local communication which enables the devel-
opment of a fully pipelinable architecture.

1. INTRODUCTION

Adaptive lattice algorithms update the so called er-
ror parameters, i.e., the difference between system’s
output and desired response signal, for all intermedi-
ate filter orders, [1]-[6]. The number of error variables
used as well as the operations needed for their time
update, depends linearly on the dimension of system’s
parameters. The error variables are utilized for the
computation of the reflection coefficients which in turn
are used for the update of the error parameters them-
selves. Moreover, they can serve for the computation
of the corresponding transversal filters, using order up-
date recursions.

The proposed normalized adaptive lattice LS algo-
rithm, although it deals with the multichannel prob-
lem, it manages to get free of matrix operations alto-
gether, in contrast to known adaptive schemes that re-
quire matrix manipulations, [2]-[3]. The multichannel
formulation is naturally decomposed into k single chan-
nel subsystems and a single block step is replaced by a
sequence of k successive phases allowing for full pipelin-
ing. The proposed scheme is capable for handling mul-
tichannel filters with different number of delay elements
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assigned to each input channel. The power/angle nor-
malization method is adopted. As a result, all internal
variables utilized by the algorithm are within the range
of [-1,1]. -

2. PROBLEM FORMULATION

A multi-input single-output FIR filter is described by
the following difference equation

k. my;

y(n) = —Zin(n—l+1)c; (1)

i=1 [=1

where k is the number of input channels, and ;(n),
1t = 1,...k, are the input signals. Integer m;, named
the order of the filter with respect to input iz, is, in
general, different for each input signal channel, m; #
m;,1,j =1,2...k, [5]-[6].

The vector that carries the filter coeflicients is de-
fined as

Cm, = [Cm,)i=1...k) Cm; = [C}li=1...m,

where, my = [mj,my ... m] is a multi index that con-
sists of the individual filter orders. A set of k regressor
vectors is defined as

j T i liz S J
Ko (0) =[x (n = s 8= { 151 @)
where x}, (n) = [zi(n + 1 = ]i=1..m, and j = 1...k.
Then, eq. (1) takes the form

y(n) = —m, (n)Cm,

Given a desired response signal z{n) and input sig-
nals z;(n), z3(n) .. zx(n), the optimum filter, in the
Least Squares sense, minimizes the total squared error
over a finite data horizon, weighted by an exponentially
decay factor, 0 < A <1,

Em,(N) = (e(n),e(n)), e(n) = z(n) - y(n)
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Figure 1: Error variables update (k = 3). o rebresents
a unit time delay.

where (z,y) = 3.N_, A¥~"zy?. The pertinent LS filter
satisfies the set of linear equations

Rin, (N)Cm, (N) = —dm, (V) 3)
where Ry (N) is the sampled autocorrelation matrix
corresponding to the regressor X, (n). Following eq.
(2), a set of sampled autocorrelation matrices is defined
as
Riy, (N) = (X, (n) X5, (), =0,...k

dm, (V) is the cross correlation between the inputs and
the desired response signal, i.e.,

dm, (V) = (Xm, (n)z(n))

While a standard linear system solver can be uti-
lized for the solution of the normal equations, the struc-
ture of matrix Ry, (V) enables the development of ef-
ficient algorithms for the computation of the optimal
filter Cm, (N). The derivation of such fast algorithms
is based on the nesting properties of the autocorrela-
tion matrix that permits the order recursive estimation
of the optimal filter, starting from C;(N) up to the fi-
nal filter Cm, (IV), [5]-[6]. Two sets of auxiliary vari-
ables are utilized, A¥(N), v = 1,2...k, and B¥#(N),
¢ =1,2...k, corresponding to multi-input single out-
put forward and backward linear predictors, respec-
tively, [5], {6]. They are defined by the linear system of
equations

Rg’l),_(N)A(")S(N) (N v =1,2.. .k
J(N) = (X (n), 7, (n))
Ry (N)B(‘”'l) D (N),p=0,1.. k-1
BUIN) = (X (1), Zn1 (0 — )

3. THE ADAPTIVE LATTICE
ALGORITHM

Filter and forward and backward predictors are adap-
tively estimated as, [6]

Cmy(V) = Cm, (N = 1) + Wi, (N)egn, (V)

€, (V) = 2(N) + 2%, (N)Cm, (V)

BEI() = BBV - 1) + W, (M) ()

St () = Tt (N = myan) + X“‘”(N)B"“(N)

Am () = Ain, (Y 1) + Wia, (N)efg) (V)
o (V) ==, (N>+x,&'1f(N>A (V)

The set of k Kalman gain vectors are utilized above is
defined as

Ry, (N-1)Wi,, (N) =

Notice that W, (N) = Wi, (N —1). The a posteriori
errors defined above, are related to the corresponding
a priori error as egy, (V) = e, (N)a'fm(?.)(N), ﬁl:)(N)
= effsy (M) (N), ey ™ (V) ey (Mg (),
where angjh)(N) =1- X{ék( YWhn, (N —1). Based on
the above time updates and the order recursive scheme
of [5], an a posteriori adaptive lattice algorithm has
been derived in [6]. During each iteration, a set of
reflection coeflicients is updated which are turn is uti-
lized for the order update of the error parameters them-
selves. The algorithm is summarized on Table 1.

A posteriori error variables for the filter as well
as for the forward and backward predictors, are es-
timated using a recursive lattice-ladder scheme. The
passage from error variables of order my to the succes-
sive my + k is accomplished via a set of k single step
recursions. During the first iteration (¢ = 0) of a new
step, the forward prediction errors are coupled together
with the backward prediction errors in a particular
way which is: [ef1, €2%], [e/2, €%1], [e72, €02], [efF, eb(K—1)).
When (7 = 1) prediction errors are coupled together as:
[Efl’eb(k—l)], [€f2,€bk], [ef3,e”1], [efk b(k— 2)] Fma.]ly,
(i = k — 1) the pairs are: [ef!, €], [e/2,€b?], [ef3, €3],
[ef%, €%%] (see Figure 1).

~ X, (N),7=0,1,2...k~

4. THE NORMALIZED ADAPTIVE
ALGORITHM

Let us define the power/angle normalized errors, for
the filter as well as for the forward and backward pre-
dictors,

cm, (V) = em, (N)am; (N)ag, (V)
BEI(N) = 8D (Nam, T (Mo, (V)
P, (V) = i (W) mfr(mcvjf (V)
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<B(N) = e, (N), 4 (W) = i) (N), ] (V) = efg) (V)
g (N) = agt! (N),ag(")(N) = o) (V)

FOR i = 0 TO (k — 1)
LET I =right_rotate[l2...k
FOR 4 =0TO (k—1), LET

= iy
v=I(p+1)

M) S () )
(V) = (N)ey ™ (N)

(")(N)_e(v)(N) h W(V)(N)

SDv) 2 2gKED(N - ) + )5 )
o) = ~BE /el ()
sz_*(_q)( )= b(#+1 (N)/Zh b(#+1)(N)

f(#+1)(N) Zh b(/i+1)(N)+ f(")(N)kb(F+1)(N)
(V)(N) (")(N)+Zh b(#+1)(N)kf(V) )

ol (V) = of ) (W) + B+ (RS Sy

= XN - 1) + {L?(N)efi?(zv)

b

A‘;*j(’(g)) Ziyer ""”:(’(g))+ﬂf}(‘iill)(N)kf§‘i+”(N)
—?\> o )1)+ ’flb (]Y)) : (N)b( +1)
o (N) = a¥ O (N) + (ef* (N))z/z" #TU(N)
ENDFOR p

°(N)—e°<N) O(w) ,

€1 (V) = ABE (V) + (M)t D (W) au(N)
£ () = =85, (V) /ad TV (V)

€611 (N) = e§(N) + €D (N )k, 4 (V)

t+1(N) =0y (N) +ﬂ1.+1( ) z+1(N)
= Aaf(V — 1) + €61 (N)egy1 (V)

ENDFOR ¢

€ in(N) = €5(N)
&) (V) = EW(N), el (V) = el ()
O‘m,,+k(N) = O‘k(N) O‘m,.+k(N) = ay P(N)

b b v v
) (V) = AP (N), ol (V) = o (W)

Table 1. The a posteriori adaptive lattice algorithm.
Zy represents a delay with respect to V. It is activated
by k, as: h =1, if v = k, h = 0, otherwise.

Moreover, define the normalized filter reflection co-
efficients, and a single set of normalized combined for-
ward/backward reflection coefficients, for all interme-
diate orders ¢ = 0,1...k,

Lisa(N) = B2 (N)a] =(N) “%N)
RUFD(N) = gt (N)a T (N)Zhay 5 ()

Then, it is easy to prove that

5D (BT D)) =
f(V)(N) —f() (N)=1- (kffll(N))z

z+1(N)a"°(N) =1— (L1 (N))?

Thus |k (V)] < 1 and |Li+1 (V)] < 1. Moreover,

af(N)a; (N — 1) = A = (c;(N))?

b(#+1)(N) —b(#+1)(N 1)=X— (by+1(N))2
ol (N7 T (N - 1) = A = (F1(N))?
which result to |c;(N)| < 1, BT} (V)| < 1, and

Ifr (V)] < 1.

The normalized algorithm of Table 2 is then de-
rived, by applying the above definitions to the corre-
sponding variables of Table 1. The lattice algorithm
of Table 2 is depicted in Figure 2, for a special case of
a three channel problem, ¥ = 3, and final multi index
m3 = [my, my, m3] = [7,3,1].

5. CONCLUSIONS

The highly modular normalized adaptive lattice algo-
rithm for multichannel Least Squares FIR filtering pre-
sented. Multichannel filters with different number of
delay elements per input channel are allowed. Two ba-
sic units, the lattice cell and ladder cell, are required
for the implementation of the algorithm. Scalar only
operations, multiplications/divisions and square roots,
are utilized. In addition, the inherent modulatity and
the local communication enables the development of a
fully pipelinable architecture.
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ofy (V) = Aafy (N — 1) + 22(N), a [0]( ) =Ml (N - 1) + z3(N)
Clo} (N) = Z(N)a[o] (N) f[o (N) [o (N) = ‘L'J(N)a[o] (N)
FORs=1TO0 k

FORj=1T0 m,—my41, co(N)=cm,(N),b5(N) = by, (N), f§(N) = fin,(N)
FOR:=0TO (s—1) LET I =rightrotate[l12...s— 1],-+1

Liri(N) = /1= (Y (V)2 /T = (c(N)2Lip1 (N = 1) + BTN )i (N)

Ci+1(N)= Ct(N)"bH-l( )€ i(V)

\/1 — (B (V)21 = (€11 (V)2

FORu=0TO(s—1) LET v=I(p+1)

BELN) = 1= (P21 = (ZEBEH I (N)RRER N — 1)+ ZRBH () £ (V)
FIN) = ZEHF RS V)

Fra(N) =
™ V1- @)1 - (e ()2
iy - ZRBTUN) = NN

b1+1 (N)_ L

V1= (@)1= RER ()

ENDFOR p
FORp=s+1T0k

oo \/l—f({“) b*\’/lt (b’*;;(N(—1))>2k:‘+1(N—1>+b:i“(N—1>f:‘(N>
b i -1
by = fl.(N) =
i1 (V) = fiL (V) \/1_ (B (N 1))2\/1_ (K2, (N))?

ENDFOR p
ENDFOR i cm,+(N) = co(N), b, 4o(N) = BE(V), foa,44(V) = £2(NV)
ENDFOR j

ENDFOR s

Table 2. The normalized adaptive lattice algorithm
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Figure 2. The highly modular normalized adaptive lattice structure for m3 = [7, 3, 1].
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