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Abstract — A class of adaptive filters based on sequential eigen-
decomposition of the data covariance matrix is introduced. These
new algorithms are completely rank revealing and hence they
can perfectly handle the following two relevant data cases
where conventional RLS methods fail to provide satisfactory
results: 1) Highly oversampled "smooth” data with rank deficient
or almost rank deficient covariance matrix. 2} Noise-corrupted
data where a signal must be separated effectively from super-
imposed noise. This paper corrects the widely held believe that
eigenbased algorithms must be computationally more demanding
than conventional RLS techniques. A spatial RLS adaptive filter
has a principal complexity of O(N“) operations per time step,
where N is the filter order. Somewhat ironically, though, the
corresponding new eigensubspace or low rank adaptive filter
requires only O(Nr) operations per time step where r s N
denotes the numerical rank of the data covariance matrix. Thus
eigensubspace adaptive filters can be computationally less or
even much less demanding depending on the rank/order ratio
r/N or the "compressability” of the signal. Some high-perfor-
mance subspace trackers are obtained as by-products of this
research. Simulation results confirm our claims.

1. INTRODUCTION

Classical RLS techniques are based on two fatal assumptions:
1) They assume that the data covariance matrix has full rank
r= N and 2) they assume that the data is all signal and contains
no noise. Such ideal conditions are seldom observed in practice.
In communications and in sensor array processing, the signal is
often buried in noise of considerable variance. Additionally, the
numerical rank r of the signal covariance matrix is often smaller
or much smaller than the number of observations or the filter
order N. In these cases, the relevant information in a signal can
be mapped or “compressed” with little or no loss of information
into a dominant signal subspace of dimension r < N spanned by
the orthogonal “eigensignals” or "natural modes” of the signal.
In this paper, we develop the theory for a class of adaptive
filters that project signals onto a dominant signal subspace
rather than on the "complete” data subspace. These eigensub-
space adaptive filters can handle both oversampled and noise-
corrupted data. An effective separation of signal and noise is
achieved and even a significant complexity reduction is possible
when the number of sensors or taps is much larger than the
dominant signal subspace dimension r. Thus the necessary
amount of computations which must be expended in a specific
application is no longer fixed, but is a function of the compres-
sability of the given signal determined by the rank/order ratio
r/N. Thus eigensubspace adaptive filtering means noise suppres-
sion and complexity reduction. The theory of eigensubspace or
low rank adaptive filters is based on a mathematical concept
named the Schur pseudo-inverse. This pseudo-inverse has the
distinct property that it approximates the more well-known
Moore-Penrose pseudo-inverse but can be updated recursively in
time using reliable, stable and economical schemes. Results
appear considerably condensed in this paper due to space
limitations. The interested reader is referred to the detailed
discussion givenin{t].

2. RANK REDUCTION FOR ADAPTIVE FILTERING

Conventional RLS adaptive filters can be named "full rank” tech-
niques because they project, at each time step, a reference
signal vector y(t) onto a subspace spanned by the N column
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vectors of an LxN data matrix X(t) =[x1(t), x,(t),
Define an orthogonal projection operator P(t),

B (v = X0 0X'(® W

and its orthogonal complement B (t) =I- By(t) where lis an LxL
identity matrix and ®(t) = XT(t)X(t) is an NxN sample covariance
matrix. Assume first that the inverse of ®(t) exists. Then d(t)
is the orthogonal projection of y(t) onto the column space of
X(t) and e(t} is the orthogonal complement or “residual vector™:

d(v) = Byt y(v) (2a,b)

At each time step, an adaptive filter extracts only a single com-
ponent of either d(t) or e(t). Usually the top components deno-
ted by d(t) and e(t) are computed. They can be extracted from
the vectors usmg a top pinning vector x Ty =[1,0...0]:

A = i od) elt) = m (t)e(t) (3a,b)
A pinning of the data matrix extracts the actual data snapshot
vector z(t),

27 = [x,(0, %00, .. . xy(0] = T OX® )

and a pinning of y(t) extracts the actual reference signal sample
y(t). Introduce a cross correlation vector c(t) and the adaptive
filter weight vector a(t):

, X(0].

, e(t) = By (O)y(t)

clt) = Xoy) alty = 0 (W {5a,b)
Realize that:
T T
dit) = 2T av) | elt) = y(t) - 27 (1) a(t) (6a,b)

because y(t) = d(t) + e(t). Thus the top components d(t) and e(t)

can be computed at each time step using a transversal filter or

adaptive linear combiner of length N taps with coefficient vector

a(t) and state vector z(t). In what follows, spatial and temporal

adaptive filtering will be covered by the same unified low rank

adaptive filter theory yielding fast algorithms for both cases.
Begin with the exact EVD of ®(t) as follows:

o) = VOAD V(D %)

where V(t) = [v‘(t), v,(t), ., VN(t)] is the NxN orthonormal
matrix of eigenvectors and A(t) = diag()&l(t). X,(t), , )‘N(t))
is the NxN diagonal matrix of eigenvalues. Assume that the
eigem;alues in A(t) appear in the following magnitude structure:

X202 2 (B 2h () =530 = .. = 6X(t) = A (t). (8)

Here 62(t) represents the noise floor or “water pouring” level.
We dlstmgulsh two relevant data cases:

A: 62(t) = small: "clean” and overmodeled signal.

B: o%(0) =farge : overmodeled signal in white noise.
In any case, we assume that the signal of interest can be concen-
trated in a dominant signal subspace of dimension r < N repre-
sented by the first r eigenvectors V_(t) = [Vl(t), vylt), ..., vr(t)].
Assume further that signal and noise are mutually orthogonal
functions. Then the estimated data covariance matrix ®(t) can
be represented as the sum of a rank r approximant ® (t) =
V. (OA (t)V (t) - which carries the information about the sngnal
of mterest and a noise covariance matrix ® . _ (t):

ot) = O (t) + @ (t) (9

Define the Moore-Penrose pseudo-inverse O:(t) of @ (t) as
follows [2]:

r+i

noise
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ol = vrmA;'(t) vie (10)
where AZ'(0) = diag(2] (0, X3 (0), 2.1(9). A low rank or
elgensubspace coefflment vect.or a (t) is next defined by re-
placing the inverse covariance matrix in (5b) by the Moore-Pen-
rose pseudo-inverse yleldmg the following low rank in-space

and residual vectors d'(t) and e'(t), respectively:
d¥v) = Xwa'tt) = XV (A, (t)V:(t) clt) (ta)

e’ =y -drw . (11b)

Recall that in (2a) the conventional (full rank) in-space vector
d(t) has been posed as the orthogonal projection of y(t) onto
the full column space of X(t). Now, we can show (see [1] for
details) that d*(t) can be interpreted as the orthogonal projection
of y(t) onto a dominant signal subspace determined by the first
r left singular vectors in U(t), where X(t) = WHSILVL) ist the
SVD of X(t). Thus define a projection operator P (t) = U (t) u:-(t)
that projects vectors orthogonally onto the dominant signal sub-
space spanned by the first r column vectors U (t) in U(t) to find:

d*(ty = Py e = (12a,b)

i
where P {t) = I - P (t). These expressions specify the eigen-
subspace projections corresponding to the conventional "full-
subspace” projections according to (2a,b).

Piy)

3. THE SCHUR PSEUDO-INVERSE

The computation of eigensubspace projections such as d *(t) and

e requires knowledge about the dominant r eigenvectors V_(t}
and the corresponding dominant r eigenvalues A (t) of the data
covariance matrix ®(t) at each time step. One could update these
components using recursive schemes [3]). The direct updating of
an EVD, however, is a difficult task because the EVD is a strictly
diagonal decomposition. Therefore, more profitable approaches
start from a decomposition where the matrix of eigenvalues is
not a priori restricted to diagonal shape, but can "blow up” to
triangular structure in case of misadjustment. If defined approp-
riately, decompositions of this kind can be updated easily in time
and their elements will converge rapidly towards the elements
of the true EVD. For this purpose, consider the following
"Schur-type” decomposition:

Rty = QT (B OV Q(t-1 (13)

Here Q(t) is a strictly orthonormal Nxr recursion matrix. R(t)
is an upper-right triangular matrix. Note that (13) originates
from a pre-multiplication of both sides of Q(t)R(t) = ®(t) Q(t-1)
by Q (t) because QT(t) Q(t) = I. Thus we may compute sub-
sequent orthonormal recursion subspaces Q and corresponding
triangular matrices R by the following two-term recurrence
known as simultaneous orthogonal iteration [2]:

A(t) = O(t)Q(t-1) s (14a)
Alt) = Q(tIR(t) "skinny” QR factorization . (14b)

An auxiliary matrix A(t) is formed as the product of ®(t) and
Q(t-1). The desired Q(t) and R(t) are determined by the skinny
QR factorization of A(t). Simultaneous orthogonal iteration
originates as a special case of Bauer's classical bi-iteration [4].
Provided that @(t) is time invariant with monotonically decreasing
dominant eigenvalues one can show that the sequence of Qs
will converge against the dominant eigensubspace V_(t) and the
sequence of R's will converge against the diagonal matrix A (t)
of dominant eigenvalues. In our case, both ®(t) and cft) are
slowly varying functions of time because they are updated
continuously according to:

Ot) = a®(t-1 + (~0z(z () {152)
c(t) = ac(t-1) + (1-a)z(t)y(t) , (15b)

where a is a positive exponential forgetting factor close to 1. In

this case, the orthogonal iteration (14a,b) is a device that tracks
the dominant eigensubspace V _(t) and the associated dominant
eigenvalues in A _(t). Thus at each time step, the Schur-type de-
composition (13) w1ll tend to approximate A _(t) = VT(t) )V _(t).
Consequently a matrix 6 (t) defined as

0 (t) = Q(t)R(t)Q (te-1) (16)
will tend to approxnmate the low rank covariance matrix ®_(t) =
V (A, (t)V (t). We further conclude that the Moore—Penrose

pseudo inverse @ (t) defined in (10) can be approximated by the
Schur pseudo—mverse 6 (t) defined as follows:

0 (t) = QUt-DR" (t)Q {3 B 7

Note that R~ (t) always exists provided that r is the rank of ®(t).
Introduce a projection operator P (t) = Q(t)Q (t) that projects
vectors orthogonally onto the recurslon subspace Q(t) to demon-
strate that the Schur pseudo—mverse satisfies the following
relations: Or(t) Or(t) PQ(t) O (t)O (t) = P (t-1). Use these
relations to prove that the Schur pseudo mverse satisfies the
following set of Moore-Penrose conditions:

~ /\+ ~ ~ A* A A‘ _
Swdwdom-8w.  Swdwdw-
(8,08'®m) =8 8w, (8wdw)" -

A+

o'w
I\+ ~
CXCE XC

4. ADAPTIVE FILTERING USING THE SCHUR
PSEUDO-INVERSE

Replace the Moore-Penrose pseudo-inverse in (iia,b} by the
Schur pseudo-inverse {17) to obtain the following eigensubspece
adaptive filter based on the Schur pseudo-inverse:

d'w =z wa'm = 2 WQt-HR W QW e {18a)
=y -dlw . (18b)

The recursion matrix Q acts like a data compressor on both z(t)
and c(t). Thus define "compressed” rx1 vectors h(t), g(t) and
(t.) as follows:

h(t) = Q (t-D z(t), g(t) = Q  (t-Det), g (1) = Q (B)e(t) . (19a-c)

Observe that the adaptive filter for the in-space component (18a)
can be expressed in terms of h(t) and g‘(t):

d% = BTOR wghn . (20)
A quick inspection of (20) reveals that this expression can be
reduced to the computation of an inner product d*w =h%w pit)
with an auxiliary rx1 vector p(t) which is obtained via back-sub-
stitution from the rxr upper triangular system R(t) p(t) = g‘(t).

S. FAST EIGENSUBSPACE ADAPTIVE FILTERS USING A
DECOMPOSITION OF PROJECTIONS

Fast subspace adaptive filtering requires a fast scheme for
sequential orthogonal iteration. The key step towards a fast
algorithm for sequential orthogonal iteration Is the orthogonal
projection of the actual recursion subspace Q(t) onto the pre-
vious (one time step delayed) subspace Q(t-1). Hereby Q(t) is
decomposed into an "in-space” component representing the "old"
information in Q(t) and an orthogonal complement subspace A(t)
of dimension Nxr that represents the innovation in Q(t) based
on the actual observation z(t). Recall that the projection oper-
ator P, (t-1) can be used to project vectors orthogonally onto
Q(t-1). Thus an orthogonal decomposition of Q(t) can be stated
as follows:

Q) = P (t-DQ(L) + Alt) 2n

where PQ(t-l)Q(t) is the information in Q(t) which can be repre-
sented in the "old" subspace Q(t- I) and A(t) is an innovations
subspace that is orthogonal with respect to Q(t-1). Thus A(t)
satisfies: Q (t-1) A(t) = 0. Introduce an rxr matrix O(t) of cosines
of angles between subsequent subspaces as follows: O(t) =
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QT(t~1) Q(t). Verify that the in-space component of Q(t) can be
expressed as a "rotated” version of Q(t-1) because PQ(t-l)Q(t) =
Q(t-D QT (-1 Q(t) = Q(t-1) B(t). Thus the “cosine matrix" 6(t)
acts as a weight factor or rotor on the subspace Q(t-1). A com-
bination of the foregoing results finally yields:

Q(t) = Q(t-1) B(¢t) + A(t) . (22)

Continue with a substitution of the covariance time update ({5a)
into the "mapping equation” (14a) of orthogonal iteration:

AW = [«0t- + -0 z(v)z (0 ] Qe-D
= a®(t-DQ(t-D + H-z(OBT (D . (23)

Express Q(t-1) in (23) in terms of Q(t-2)8(t-1} and A(t-1) accor-
ding to (22) to obtain: A(t) = a®(t-1) Q(t-2)8(t-1) + a®(t-1) A(t-1)
+(1-a) () hT(t). Note that ®(t-1)Q(t-2) = A(t-1) according to (14a)
and therefore: A(t) = a A(t-1) 8(t-1) + a ®(t-1) A(t-1) + (1-c) z(t) B(t).
A surprising fact with this expression is that the term
@(t-1) A(t-1) must vanish completely provided only that signal
and noise are mutually orthogonal and the dominant signal sub-
space dimension r has been chosen sufficiently large to accomo-~
date all fundamental components or “"natural modes" of the
signal in 8r . The proof of this statement is long and appears
in [1]. In any case, this result is fundamental because it states
that auxiliary matrices A can be updated directly in time without
any simplification via the following matrix recursion:

AD) = cAlt-DB(t-D + (- 2R () . (24)
We are now in a position to establish a first variant of an eigen-
subspace or low rank adaptive filter. This algorithm named
LORAF 1 consists of the following sequence of computations:

Initialize: QT(0) = [1, 0 ]; 8(0) =1; c"(0) = [0...0]

For each time step compute: (19a), (24), (15b), (14b),

e(t) = QT(t-1) Q(1), (190), p(t) = R™{(vg*(),

d 7 = b p(t), (18b).
LORAF 1 requires only O(Nr?) computations. The operations
count is dominated by the explicit QR factorization in (14b). The
question is: Is it really necessary to work with an auxiliary
matrix A(t) and its explicit QR factorization ? In fact the answer
is NO ! One of the probably most striking results in this context
is that Q and R factors can be updated separately in time. The
auxiliary matrix A(t) must not be formed explicitly anymore.
This insight forms the basis for a class of sophisticated fast
sequential eigensubspace adaptive filters and subspace trackers.

6. FAST EIGENSUBSPACE ADAPTIVE FILTERS BASED ON
SEPARATE QR FACTOR TRACKING
The problem of interest is the direct time recursive updating of
the QR factors of A(t) for a sequence of A's generated according
to (24). A somewhat simplified problem is the tracking of the
QR factors of a sequence of A’s generated according to

AL = cAlt-1) + (1) z(O BT () . 25)
Let's solve this problem first. Subsequently, we generalize the
resuft and establish the exact QR factor tracker for the true
sequence of A's generated by recursion (24). Consider (25) for
the moment and note that the QR factors of A(t) can be posed
directly as a function of the QR factors of A(t-1) plus a rank-one
update as follows: Q(t)R(t) = « Q(t-DR(t-1) + (1-a)Z(t) BT(L).

We shall show that this updating problem has a fast solution.
Only 3r - 3 Givens row rotations are finally required to compute
the factors Q(t) and R(t) from their predecessors Q(t-1) and
R(t-1). The auxiliary matrix A(t) will not be formed explicitly
anymore. A drastic reduction of the overall operations count will
be achieved. Recall that the projection operator P (t) projects
vectors orthogonally onto the subspace spanned by Q(t). Hence
the complement z (t) of the orthogonal projection of z(t) onto
Q(t-1) is computed as follows:

2,(6) = PA(t-Dz(t) = (I-Py(t-D) )z(t) = 2(t) - Qt-Dh(V) . (26)

Introduce the "energy” Z(t) of z,(t): Z(t) = z}-(t)zl(t). Establish

the normalized vector Z (t) as follows:

z,w=2"wz, =20z -2z""?

(&) Q(t-D h(t). (27)
Next rearrange (27) to see that z(t) can be expressed as the sum
of 2 (t)z (t) and Q(t-1) h(t):

z(t) =z (t)il(t) + Qt-) hit)y . (28)

Use (28) to show that the rank-one QR-update (k') in (25)
can be expressed as follows:

QR = xQt-DR(t-D + - Z 3V Z, (0B (0)
+ (l-a) QUE-D R(ORT(®) . 29

This decomposition has the key property that it can be expressed
equivalently as a product of two partitioned matrices:

-0 2% aT v

|
QOR®Y =|Z,(0] Qit-D I

: aR(t-1) + (1~e)h(t)h " (t)
It will become apparent that this representation can be used to
restore the QR structure at time t with a sequence of only 3r-3
orthonormal Givens row rotations repesented by a multiple
rotation matrix G(t) where GT(t)G(t) = L. For this purpose, insert
the matrix product G G(t) = I between the two matrix-valued
factors in (30) and split the expression into the following two
recursions:

R(t) (1-a) Zl/z(t) hT(t)
______ =Gt [T T T T T T (31a)
0----0 aR(t-1) + (1-a)h(t)h " (t)
i ] |
| _ | T
Q) I1q_ (]| =]|Z,(0)] Qt-1 G (t) . (3tb)
ot i
L ! !

Consider recursion (31a). The Givens plane rotations in G{(t) must
be determined so that the augmented and updated matrix R{(t-1)
in (31a) is transformed into a strictly upper-right triangular
matrix R(t) by rotation. Investigate the principal nature of this
problem. Although expression aR{t-1) +(1-c) h(t)h'(t) constitutes
a "full” matrix, the update h(t)hT(t) has only rank t and there-
fore the lower partition of (31a) can be reduced to an upper
Hessenberg matrix in only r - 2 row rotations. This constitutes
a first step in the transformation (3fa). In a second step, the
upper Hessenberg form is transformed into an upper triangular
matrix using r - { Hessenberg QR steps. A sequence of r Hessen-
berg QR steps finally produces R(t). See [i] for a detailed-
explanation of these transformation steps. A fast O(Nr) eigen-
subspace adaptive filter LORAF 2 can be developed on this basis.

For this purpose, consider a pre-multiplication of both sides of
the cross correlation time-update equation (15b) by Q (t-1):

Q (t-e(t) = « Q (t-1 eft-1) + (l—a)Q (t-Dz(t)y(t) . (32)
A comparison with (19a-c¢) reveals that (32) yields:
gt = ag (t-D + (I-adh(t)y(t) . (33

Thus the strategy is to update g{t) from the “old” g‘(t—l) plus
a "scalarly” weighted portion of h(t). Hence only h(t)} must be
computed explicitly from the input data z(t) using dat.a com-
pression according to (19a) because we can show that g *(t) can
be obtained from g(t) by rotation. For this purpose, consider a
transposed version of recursion (3ib) and post-multiply both
sides of this expression by c(t) to obtain:

=T,
T Z,(t)elt)
Q@ 1 gw “j """" ) (34)
gL (et Q' (t-De(t)
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Clearly, Q (t)e(t) = g*(t) and Q' (t-Dc(t) = g(t), therefore:

g Z (O clt)
______ =G|~ (35)
ql,(bc®) gt)

which completes the algorithm. The recursions of the O(Nr)
algorithm LORAF 2 are summarized as follows:
Initialize: Q70 =[1,0]; RO =0; c0) = g"10) =[0... 0]
For each time step compute: (19a), (15b), (33), (26),
Z(t) = 20 z (1), (27, (31a,b), 35), p(t) = R (t)g (L),
d ' = hT(v pit), (18b).
This algorithm still assumes that ©(t) = I according to the
simplified recursion (25). In fact, experiments have shown that
this is not a very limiting assumption because in practice, 8(t)
will tend to an identity matrix whenever the data characteristics
changes smoothly with time and « is close to 1. Nevertheless,
we continue by establishing an exact algorithm based on direct
QR factor updating of the exact time update (24). For this pur-
pose, introduce QR factors of subsequent time steps in (24) and
realize that the situation is somewhat complicated at first glance
because the QR structure on the right side of (24) is destroyed
by ©(t-1). Define an intermediate rxr matrix H(t) = R(e-1)8(t-1).
Now recursion (24) can be expressed as follows:

Q(tIR(t) = a« Q(t-1) H(t) + t~z(yh"(t) . (36)
Restore the QR structure on the right side of (36) via rotation
using an intermediate sequence of orthonormal Givens plane
rotors T(t) as follows:

R = TOHY Q' = Qt-DT (V) (37a,b)
We obtain an update equation that exhibits the desired structure:
QORI = « QR + -0z () . (38)

The fast direct QR updating scheme (31a,b) derived in the context
of LORAF 1 is applied directly onto (38) which can be embedded
in the recursions (31a,b) where only Q —> Q' , R-> R’ and
G -> G'. Fortunately, it turns out that Q'(t) must not be
computed explicitly. Substitute (37b) into the modified version
of (31b) to realize that a direct updating scheme for Q has the
following structure:

: e I
QU [g,4®| = E,0] QD
| I

T
G (t). (3%

T
Investigate the structure of the multiple rotation matrix G (t).
For this purpose, pre-multiply both sides of the modified version

of 31b) by [Z,00] Q'] Clearty, Z,(E, (U =1 and
Q (t)Q(t) = I. Moreover, we must have i;_r(t) Qw=[0...0]
because Z,(Q(t-1) = [0...0] and Q(t) = QUt-DT (v) .

Strictly speaking, Q(t) is just a rotated basis of the same sub-
space spanned by Q(t-1}. Thus Z,{t) must be orthogonal with
respect to Q (t) as well. We obtain:

z (t)Q(t)| zl(t)qﬂl( t)

T
G = e . (40)
Q (t)Q(t)| Q (b, (b
i

| -
1o - - zXoQw | zhvg,.®
S R CE I Tr T . (4D
| e |T(Q (tg
|

r*l

Most interestingly, we have here a fairly fast scheme for com-
puting the cosine matrix 6(t) using only the 3r-3 column

rotations in G' (t) applied on the augmented intermediate rot-
ation matrix T(t). According to (41), ©(t) arises as the lower-
left submatrix in this operation because 6(t) = Q (t-1) Q(t) and
QT(t—l) = Tt Q'T(t) which fFollows directly from (37b). But this
is not the only useful result of this operation. Continue with a
substitution of (41) into (39):
| { ElnQw . 09,
= | ne gy =~ ———
Qv g, 0[={Z, (] Q-1 I
[Tt o ) {T ®Q T(bg,.,®
i | 1
Apply the rules of partitioned matrix/vector multiplication to
demonstrate that:

Q) = Q-0 B + Z,(VETL) : (42)
£%0 = Z, QW (43)

Note that f(t) can be extracted directly from the partitoning
scheme (41). Compare (42) with the initial innovations approach
(22). Clearly now we realize that the rank one innovations sub-
space A(t) is given by:

AL = Z(WF® . (44)

This closes the circle of basic considerations about fast sequen-
tial orthogonal iteration and fast eigensubspace adaptive fiiters.
Fmally, a slight modificatlon is necessary in the updating scheme
of g *(t) originally established in (35). Incorporate T(t} to show
that now we must have:

* PO
_______ =GO e | (45)
q7,,(be® Ttg®)

These recursions constitute the exact fast eigensubspace or low
rank adaptive filter named LORAF 3 based on a fast direct QR
factor updating scheme. The recursions of this algorithm are
summarized as follows:

Init.: Q1) =[1,0]; RO) = 0; ¢T(0) = g*T(0) = [0... 0]; B(0) =1
For each time step compute: (19a), (15b}), (33), (26),
Z(t) = 21t z, (v, (27), H(0) = R(t-DO(t-1), (31a), (41), (42),
(49, pt) = R Hwg* ), d v = Tt pt), (18b).

7. CONCLUSIONS

We have established a theory of low rank or eigensubspace adap-
tive Filters based on sequential orthogonal iteration. The most
surprising point is probably rooted in the fact that the fastest
versions of these algorithms are based on a time recursive
scheme for independent tracking of the QR factors of a time-
varying auxiliary matrix. Experiments indicate a superior perfor-
mance of the new eigensubspace adaptive filters. Experimental
results are presented at the conference and in a detailed paper[1].
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