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ABSTRACT

This paper presents two new, closely related adaptive al-
gorithms for LS system identification. The starting point
for the derivation of the algorithms is the inverse Cholesky
factor of the data correlation matrix, obtained via a QR de-
composition {QRD). Both are of O(p) computational com-
plexity with p being the order of the system. The first
algorithm is a fixed order QRD scheme with enhanced par-
allelism. The second is a lattice type algorithm based on
Givens rotations, with lower complexity compared to pre-
viously derived ones.

1. INTRODUCTION

Adaptive least squares algorithms for system identification
[1], are popular due to their fast converging properties and
are used in a variety of applications, such as channel equal-
ization, echo cancellation, spectral analysis, control, to name
but a few. Among the various efficiency issues character-
izing the performance of an algorithm those of computa-
tional complexity, parallelism and numerical robustness are
of particular importance, especially in applications where
medium to long filter lengths are required. Sometimes it
may be preferable to use an algorithm of higher complexity
but with good numerical error robustness, since this may al-
low its implementation with shorter wordlenghts and fixed
point arithmetic. This has led to the development of a class
of adaptive algorithms based on the numerically robust QR
factorization of the input data matrix via the Givens rota-
tion approach.

The development of Givens rotation based QRD algorithms
has evolved along three basic directions. Schemes of O(p?)
complexity per time iteration were the first to be derived,
with p being the order of the system [2],[3]. These schemes
update the Cholesky factor of the input data correlation
matrix and can efficiently be implemented on two dimen-
sional systolic arrays. Furthermore, they can provide the
modeling error directly, without it being necessary to com-
pute explicitly the estimates of the transversal parameters
of the unknown FIR system [3]. An alternative O(p?) RLS
scheme was recently described and it is based on the up-
date of the inverse Cholesky factor of the data correlation
matrix [8].

The other category of Givens rotation based algorithms is of
the lattice, order recursive type, exhibiting O(p) complexity
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per time iteration [1],[4]. As with all LS lattice structures,
these algorithms compute the modeling LS error for all in-
termediate orders in a pipelined fashion. The algorithms
of the third class also compute the modeling error directly
but they lack the pipelined property of the lattice type al-
gorithms [5],{6]. On the other hand, they have lower com-
plexity, compared to their lattice counterparts and they are
appropriate for fixed order modeling. This is basically due
to the fact that a set of rotation parameters (correspond-
ing to the reflection coeflicients) are generated backwards
in order, starting from that with the maximum order [1].
In this paper two new, numerically robust, QRD algorithms
based on Givens rotations are introduced. The first is of
the latter type, i.e., fixed order, direct error computing al-
gorithm. It has similar complexity but it offers enhanced
parallelism compared to previously derived ones of the same
category. Thus, if two processors are used the computation
time is almost halved. The other algorithm is of the lattice
type with the same complexity as that of the fixed order
one. Therefore, a substantial savings is accomplished com-
pared to already known QR lattice schemes.

The paper is organized as follows. Section 2 briefly reviews
the application of the QR decomposition method to the
RLS problem. The new fixed order direct error computing
algorithm is then derived in section 3. A modification of
this algorithm leads to a lattice type scheme. Simulation
results are provided in section 4 while section 5 concludes
this work. For clarity of presentation real signals are consid-
ered throughout this paper. We mostly adopt the notation
that appears in [1].

2. THE QR DECOMPOSITION
METHOD

The QR decomposition approach to the least squares prob-
lem can be expressed as follows {[1])

Rp(N)
Qp(N)Up(N) = ]

O

where Q,(N)QZ(N) =1 and U,(N) is the weighted N x p
input data matrix. R,(N)is a px p upper triangular factor.
It is by now well known that the optimum least squares
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coefficients’ vector c,(N) can be obtained by solving the
following system of equations

RP(N)CP(N) = pp(N)

where p,(V) is the upper px1 part of the vector Q,(N)y(N),
¥(N) being the weighted ”desired” vector.
The efficient update of the factor R,(N) is at the heart of
our problem. It has been shown that ([1])

N2 Ry(N - 1) ] [ Ry(N) ]

Qp(N) [
uz (N)

OT

Qp(NV) results from a sequence of basic Givens rotations
which successively annihilate the elements of the new data
vector u (N) = [u(N),u(N —1),...,u(N — p+ 1)] against
X/2R,(N —1). Xis the usual forgetting factor. At the
same time, it is most interesting that

AM2p (N —1) } [ Ps(N) ]
= (1)
y(V) &p(N)

In the last equation, é,( V) is the so-called angle normalized
error which is related to the prior error e,(N) by

ép(N) = ep(N)dp(N) V (2)

Qp(NV) [

and dp(N) is the square root of the likelihood related vari-
able ap(N) ([1])-

In the following section two fast algorithms are described.
The first is of the fixed order type computing directly the
error ep(N). A modification of this leads to an order recur-
sive (lattice type) scheme for direct error computation.

3. DERIVATION OF THE NEW
ALGORITHMS

In contrast to previously derived fast QRD algorithms ([1],
[5], [6]) our starting point is the vector

ot
- BT = et )

The essence behind any fast fixed order O(p) scheme is to be
able to circumvent the time update of a matrix by updating
a vector quantity instead. As we shall see g,(V) is such a
vector, whose time update provides all necessary rotation
angles.

3.1. Time update of gy(N)

It is easily shown that the factor Rp41(N) can be written
in the following forms

Rp(N) pE(N) al(N) 2T
[=[%) ] e
0T Gy

gp(N)

RP+1(N) = [ R
0

where p5(N) and &;(N ) are quantities that stem from the
backward prediction problem and R is the lower right tri-
angular p x p part of Rp11(N). From (4) we have

BAN) - B 0pE()
Bhw=| 1 ©)
0 (W

1 -l S Tp-1

< 4 a(,';(N) GOS(N)

Rp+1(N) = (6)
0 R

By exploiting the relation between R and R,(N — 1) we
shall end up with a step up step down update procedure
for gp(N). Indeed, if we consider the forward prediction
problem then, after some manipulations, we can write the
equation

. a5 (N) 0* i

QL(N) [ ) } = Rp41(N) (7)

PI(N) Rp(N-1)

where Q(N) is a sequence of Givens rotations that suc-
cessively annihilate the elements of pJ(~N). The procedure
starts from the last element of p{,(N ) and proceeds up-
wards. The required relation is now available. If Q{;(N }is
partitioned as

. 0w q
QI (V) = (8)
Q Q
then combination of (4),(7) and (8) results in
R=QRy(N -1) ()
27 = qf Ry(N - 1) (10)

Joining together equations (3),(6),(9),(10) and the input
vector partition

Upt1(N +1) = [u(N +1),uf (N)]¥

we obtain the following time and order update formula for

8p(N)
[ g»(N)

Note, that the first element of gp41(N+1), ro = %, is
0

known at time N +1. Furthermore if we combine equations
(3) and (5) and the input partition

] =(Q5(N)) gpt1(N +1) (11)

Upi(N +1) = [ug (N +1),u(N - p+1)]"

we get

ge+1(N +1) = [ (12)

g (N +1) J
kps1

where kpy1 is just the last element of gpiq (N + 1). The
update of gy(N) in O(p) is now straightforward from (11)
and (12).
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Algorithm Add’s | Mult’s | Div’s/SQRT’s
QR-Lattice 8p 27Tp+ 1 6p

Fast QRD 8p+2 | 20p+3 6p+4
New 8p+1 | 19p+3 Tp+3

Table 1: Comparison of complexities of fast rotation-based
algorithms

3.2. Rotation angles update
Having completed the time update of g,(N) in O(p) we
have all information available to obtain the rotation angle
parameters providing the prior error. Indeed, by consider-
ing the effect of Q,{ (N +1) on the first column of the matrix
in (7) we have (for the next time instant N + 1)
. af(N +1) @ (N +1)
QI(N +1) { = (13)
PL(N +1) 0

Vector pg(N + 1) results by applying (1) to the forward
prediction problem at time N. Indeed,

A/2pI(N) ] [ PN +1) ]
u(N +1) E(N+1)

Qp(N) [ (14)

where E;(N +1) is the angle-normalized forward error. The
square root of the forward energy &g (N + 1) can then be
computed from the well known formula ([1])

GV +1) =\ af (V) + E(V + )P (15)

Finally, the rotation angles of Qp(N + 1) can be calculated
by using the equation ([7])

i —gp(N +1) 0
Qp(N +1) = (16)
1 65(N +1)
and the scalar 6,(N + 1) is the inverse of G,(N + 1), that is
1
6p(N +1) = LOFD (17)

Equations (11),(12),(14),(15),{13) and (16) compose the pre-
diction part of our algorithm. However, the prior error at
time N + 1 needs to be calculated. This is accomplished in
the filtering part of the algorithm. More specifically, equa-
tion (1) at time N + 1 takes the form
. A2p,(N) Pp(N +1)
Qp(N +1) [ = [ (18)
y(N +1) ép(N +1)

The prior error is then given according to (2) and (17) as
ep(N +1) = (N +1)6,(N + 1) (19)

The algorithm described so far is summarized in figure 1.
The complexity of the algorithm is shown in table 1. Its

(Step (})) N+1 (N+1)
To = gp+1(N + 1) = :7)\6.3(N) = \/iﬁo(N)
fori=1:p,

g (N +1) =gl (N +1);
(1) (4 1) = B N)=00:ricy

Ep+1 chi (V) ’
ri = cpi(N)rica — s6i(N)gl D (N +1);
end;
(Step 2)
(N +1)=u(N +1);
fori=1:p,

PI (N +1) = M2l (N)PIO(N) + 58 N)&L_, (N + 1);
/(N +1) = cBi(N)&L_, (N +1) = A28, N)pS O ();
end;

(Step 3)
(N +1) =\ 2af (N) + [ (N + 1)
fori=p:1,
& (N +1) = /6 (V + DI + pEOW + )
Si(N +1) = al(N+1)
o AT
, _ PO+,
3¢1(N -+ 1) = ;}'fjl(N—""l),
end;
(Step 4)
So(N+1)=1;
fori=1:p,
BN +1) = /82, (N +1) +[g (¥ + D

iy (N
cti(N+1)= 6—{%;

(i N
sbi(N +1) = 8208,
end;
(Step 5)
Eo(N +1)=y(N +1);
fori=1:p,

PY (N +1) = AY2c8;(N + 1)p§) (N) + s8:(N + 1)
é&-1(N +1);
&(N +1) = cfi(N + 1)&i—1(N + 1) — AV/230,(N +1)
Py (V);

end;

ep(N +1) = &p(N + 1)ép(N +1);

Initialisation (Soft-constrained)

5(0) = v/, af(0) = APy, g,(0) = 07, pl(0) = 07
c0:i(0) =1, ci(0)=1,i=1,2,...,p

Figure 1: The new fixed order fast QRD algorithm
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&N +1) = u(N +1);

a5(N+1) = Aad (N) + [ (N + 1]

fori=1:p,
PRV +1) = X/2e0:(N)pJ O (N) + 6. (N)&l_, (N +1);
(N +1) = ebi(N)el (¥ +1) = X7250,(N)pfI(NV);
& (N +1) = el (M) + [ (N + 1)%;

)
al(N+1)
(N +1) = 7y
. _ pifwv+)
s¢i(N +1) = al_ (N+1)’
end;

Figure 2: Combination of steps 2 and 3 of Figure 1

complexity is similar to that of the fast QRD algorithm of
(6],[1] (see table 1). However, there is a distinct advantage.
Note that steps 1 and 2 as well as steps 3 and 4 of the new
algorithm can be performed concurrently. Thus, by using
two sets of DSP’s the execution time is almost halved. This
is not possible with the algorithms of [1], [6] which are se-
quential for each time iteration.

The algorithm of figure 1 is a fixed order algorithm. As
we can easily observe from figure 1 the execution of step 3
starts after step 2 has been completed and (N + 1) has
been calculated. Then, the loop of step 3 goes backwards
in order, something that does not comply with the basic
”pipeline” concept of a lattice structure. However, steps 2
and 3 of the algorithm can be combined if equation (15)
is adopted for the calculation of the forward energies of all
orders. Such a modification is presented in figure 2. This
leads to a new lattice algorithm with the same complexity
as our fixed order scheme. Compared to its previously de-
rived counterparts ([1],(4]) the new lattice algorithm has a
substantially lower complexity (table 1).

4. SIMULATIONS

In order to verify the correctness of the derived algorithms
a system identification problem was considered. The un-
known FIR system was of order 10, the SNR = 30dB, the
forgetting factor A = 0.98 and the initialization parameter
# = 0.01. Figure 3 shows the obtained error convergence
curves, Three curves are overlaid although they are not
distinguished. Two correspond to the novel algorithms de-
veloped in section 3 and the third to the fast QRD algo-
rithm of [6]. The curves are the average of 200 realizations.
Note that experiments with up to 500000 iterations were
run with no indication of numerical stability problems.

5. CONCLUSIONS

Two fast inverse QR decomposition based algorithms were
developed in this paper. The first is a fixed order QRD
scheme for direct error computation with enhanced par-
allelism. A modification of the scheme leads to a lattice
type algorithm with low complexity compared to already
existing QRD lattice algorithms. Computer simulations

0 50 100 150 200 250 300 350 400
Number of iterations

Figure 3: Initial convergence curves

have demonstrated the numerical stability of the proposed
algorithms while a comparative numerical accuracy study
among the various QRD as well as lattice schemes is cur-
rently under investigation.
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