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Abstract

This paper presents a robust variable step size
LMS-type algorithm with the attractive property
of achieving a small final misadjustment while pro-
viding fast convergence at early stages of adap-
tation. The performance of the algorithm is not
affected by presence of noise. Approximate anal-
ysis of convergence and steady state performance
for a zero-mean stationary Gaussian inputs and a
nonstationary optimal weight vector is provided.
Simulation results clearly indicate its superior per-
formance for stationary cases. For nonstationary
environment, our algorithm provides performance
equivalent to that of the regular LMS algorithm.

1 Introduction

Since its introduction, the LMS algorithm has
been the focus of much study. This is largely due
to its simplicity and robustness which have made
it widely adopted in many applications. How-
ever, the inherent limitation of the LMS of not
being able to satisfy the opposing fundamental
requirements of fast convergence rate and small
misadjustment demanded in most adaptive filter-
ing applications, has always directed researchers
at means and alternatives to improve and optimize
its performance. One common approach is to em-
ploy a time-varying step size in the standard LMS
weight update recursion, [1], [2], [3]. Our simu-
lation results show that the performance of these
existing variable step size (VSS) algorithms, [1-3],
is highly sensitive to the noise disturbance [4], [5].
Since measurement noise is a fact in any practical
system, the usefulness of any adaptive algorithm
is judged by its performance in the presence of this
noise.

0-7803-2431-5/95 $4.00 © 1995 |EEE

In this paper we will start by discussing the perfor-
mance of the algorithm in [1] in noisy conditions
as an example. We will show that its performance
deteriorates in the presence of measurement noise.
We then propose a new VSS LMS algorithm where
the step size of the algorithm is adjusted according
to an error autocorrelation function. As a result,
the algorithm can effectively adjust the step size
as in [1] while maintaining the immunity against
independent noise disturbance. Another signifi-
cant feature of the new algorithm is that the ad-
dition of a new parameter pertaining to the time-
averaging operation allows controlling misadjust-
ment and convergence time more independently
without the inherent need to compromize between
them as in other VSS algorithms.

2 The Algorithm

In [1], a variable step size LMS is proposed where
the step size is proportional to the error energy.
The weight update recursion of the algorithm is of
the form

W(n+ 1) = W(n) + p(n)e(r)X(n) (1)
and the step size update expression is
u(n +1) = ap(n) + 7¢(n) (2)

where 0 < a < 1,7 > 0, and p(n + 1) is set to
femin OT fimaz When it falls below or above one of
them, respectively. The algorithm has preferable
performance over the fixed step size LMS: at early
stages of adaptation, the error is large causing the
step size to increase to provide faster convergence
speed. When the error decreases, the step de-
creases thus yielding smaller misadjustment. Un-
fortunately, the usage of the instantaneous squared
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error as a measure of the closeness to the optimum
results in significant degradation in the presence of
measurement noise. This can be deduced by exam-
ining Eq.(2). The output error of the identification
system is

e(n) = d(n) - X* (n)W(n) (3
where the desired signal , d(n), is given by
d(n) = XT(W(n) +E(n)  (4)

where £(n) is a zero-mean independent distur-
bance and W*(n) is the time-varying optimal
weight vector. The input signal autocorrelation
matrix, defined as R = E{X(n)XT(n)}, can be
represented as R = QAQT where A is the eigen-
values matrix, and Q is the modal matrix of R.
Using V(n) = QTV(n), and X(n) = QTX(n)
where V(n) = W(n)— W*(n) is the translated er-
ror vector, then the statistical behavior of yu(n+1)
is determined by substituting Egs.(3) and (4) in
(2) and taking the expected average

E{u(n+1)} = aE{u(n)}
Y (E{E ()} + E{VI()AV(n)}) (5)

where we have made use of the common indepen-
dence assumption of V(n) and X(n) [6]. Clearly,
the term E{VT(n)AV(n)} influences the close-
ness of adaptive system to the optimal solution,
accordingly u(n + 1) is adjusted. However, due to
E{€%(n)}, the step size update deteriorates at all
stages of adaptation but particularly near the op-
timum. To avoid this sensitivity to noise, a new
measure is proposed. The idea is based on the fact
that near the optimum, not only is the energy in
the error is small but so is the correlation between
successive samples. Thus, we use an estimate of
the autocorrelation between e(n) and e(n — 1) to
control step size updating. The estimate s a time-
averaged of e(n)e(n — 1) described as

p(n) = Bp(n — 1) + (1 — Ble(n)e(n - 1)  (6)
and the step size update equation is

p(n +1) = ap(n) +yp(n)* (7)

where limits on u(n + 1), o, and 7 are the same
as those of the VSS LMS algorithm. The posi-
tive constant 3 (0 < 8 < 1) is an exponentially
weighting parameter that governs the averaging
time constant. The autocorrelation of e(n) and
e(n — 1) serves two objectives; firstly, rejecting the
independent noise sequence effect on step size, sec-
ondly, the autocorrelation is an efficient measure
of the closeness to the optimum. At steady-state
p(n) ~ 0 leading to p ~ 0, thus achieving smaller
misadjustment values. When the adaptation pro-
cess is active, p(n) is large leading to larger p and
faster convergence speed. This can be seen if we
rewrite the step size in Eq.(7) as

w(n+1) = ap(n) + 7E* {e(n)e(n - 1)} (8)

where we have assumed perfect estimation of the
autocorrelation of e(n) and e(n — 1). Under the
assumption of zero-mean independent noise se-
quence,

N 2
w(nb1) = au(n) by |5 ME(Vi(m)Vioa(n — 1»]

1=2

(9)
Owing to the averaging operation, the instanta-
neous behavior of the step size will be smoother
and insensitive to independent disturbance noise.
Moreover, the step size is basically proportional
to a term that can efficiently sense the adaptation
state while being independent of the noise term.

3 Performance Analysis

Performance analysis of the algorithm will be con-
sidered when operating in stationary and nonsta-
tionary noisy environments. The weight update
equation is the same as in Eq.(1) where p(n) is
attained by Eqs.(6) and (7). The optimal weight
vector is time varying generated by a random walk
model as

W*(n)=W*(n—-1)+n(n—-1) (10)

where 7(n) is a stationary noise process of zero-
mean and correlation matrix oI that accounts for
the nonstationarity of the physical system. The
measurement noise is a result of nonzero £(n) in
Eq.(4). Substituting Egs.(3), (4) and (10) in (1)
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results in

V(n+1) = [I-pX@X(m)V(n)
+ p(mEmXm) —n(m) (1)

where €nin = E{€%(n)} is the minimum value of
the MSE. From Eq.(11), it can been shown that
to ensure convergence of the weight vector mean,
0 < E{u(n)} < 12—, where Amgg is the maxi-
mum eigenvalue of R. To ensure convergence of
the mean square error, it can be shown that a suf-
ficient condition is [1]

Eli(o)) | 2
E{u(>)} = 3tr(R) (12)

from which we can show that v, a, and 3 have to
satisfy

7€$nin(1 — ﬁ) 1

1—a? = 3tr(R) (13)
The misadjustment is defined as M = =& where
€ex = E{VT(oo)A\”(oo)} is the steady state ex-
cess MSE. In the event of small values of misad-
justment, the following expression for algorithm
misadjustment can be obtained

0<

No?

~ 7 L —
M = 2tr(R) + SE (o) e (14)
where E{u(c0)} =~ (Ti%f%efnm and y =

2vae? . (1-03)
(T=a2)(TF0) °
and the misadjustment is reduced to M ~ ¥tr(R).

Practically, o, 7, and 3 are selected to produce the
same MSE attained by the fixed step size LMS
(FSS). In stationary applications, the exponen-
tial weighting parameter § is chosen close to 1,
bringing down the misadjustment to smaller val-
ues. This allows the usage of a larger v to obtain
the same level of misadjustment while maintain-
ing the stability of the algorithm, Eq.(13), where
a larger 7y will improve the convergence character-
istics of the algorithm. Thus, the utilization of 8
and 7 enable more direct control of both conver-
gence speed and final excess MSE without sacrific-
ing one for the other. From Eq.(14), the choice of
B in a nonstationary environment should achieve
a compromise between acceptable tracking prop-
erties and a low level of excess MSE. Since the first

In a stationary environment o2 = 0

term in Eq.(14) is directly proportional to 7 and
the second term is inversely proportional to v, the
optimum 7 for given « and § is the one making
both terms in Eq.(14) equal.

4 Simulations

Here, the proposed correlation-based VSS LMS
(MVSS) algorithm is compared with: variable step
size LMS (VSS) algorithm [1], the stochastic gra-
dient algorithm with gradient adaptive step size
(SGA-GAS) [2], and the fixed step size LMS (FSS)
algorithm [6]. Parameters of these algorithms are
selected to produce a comparable level of misad-
justment. Moreover, our choice of these param-
eters is also guided by the recommended values
in their corresponding publication. In all simula-
tions presented here, the desired signal d(n) is dis-
turbed by zero-mean, uncorrelated Gaussian noise
of unity variance. Results are obtained by averag-
ing over 200 independent runs.

In this example, both the system and the adap-
tive filter are excited by a correlated signal z(n)
generated by (1]

z(n) = 0.9z(n — 1) + a(n) (15)

where a(n) is a zero-mean, uncorrelated Gaussian
noise of unity variance. This type of signals pro-
vides flattened elliptical contours which usually
cause problems in the tracking capabilities of gra-
dient algorithms. The system to be modeled is a
4-coefficient FIR filter, and the FIR adaptive filter
has a dimension N = 4. The MVSS algorithm is
used with @ = 0.97, and 8 = 0.99. To obtain a
final steady state excess MSE of about —28 dB,
we used Eq.(14) to determine vy = 8 X 10~%. Note
that for this example tr(R) = 21.0526. The VSS
algorithm is used with ayss = 0.97, and to ob-
tain the same level of misadjustment, y,ss is set
to 8 x 1076. For SGA-GAS , we found experimen-
tally that p = 5 x 107! provides the desired mis-
adjustment. For all algorithms, pimaz = 0.008, and
fimin = 1 x 107%. The FSS algorithm is used with
UFSss = 3 X 10~*. Fig.1 shows that for correlated
input signals, the MVSS has better convergence
than the VSS, SGA-GAS and the FSS algorithms,
while providing the same steady state MSE. The
reason can be seen from Fig.2: p remains at fimaz
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for a longer period providing the fastest conver-
gence speed.

We have also determined that the MVSS is very
fast in responding to sudden changes in the sys-
tem where simulations showed that the conver-
gence rate of MVSS after the change in the system
remains the same as at the initial stage.

The previous example was also repeated using a
white input signal and a nonstationary optimal
weight vector generated according to a random
walk model. Simulations illustrated that the pro-
posed MVSS algorithm along with the other algo-
rithms performed as well as the F'SS in that case.

5 Conclusion
A new VSS LMS algorithm was introduced. The

step size of the algorithm is adjusted according to
the square of a time-averaging estimate of the au-
tocorrelation of e(n) and e(n — 1). As a result,
the algorithm can effectively sense the adaptation
process while maintaining the immunity against
independent noise. The autocorrelation is esti-
mated recursively requiring only one extra mul-
tiplication per iteration. Results show that the
proposed algorithm has a significant convergence
rate improvement over other VSS algorithms in
stationary environment for the same excess MSE.
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