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ABSTRACT

Current analysis of the LMS algorithm makes use of an ”in-
dependence assumption” stating statistical independence of
successive input vectors. This assumption conflicts with the
inherent deterministic coherence of the vector input signal
and, as such, is the source of conceptual and didactic dif-
ficulties. Nevertheless, due to its analytic convenience and
its moderate agreement with experimental results, it is in
widespread use. In this paper, a theory of the steady-state
behaviour of the LMS algorithm is presented that avoids
the independence assumption with its inherent problems
and yields a number of new results. Simulations support
the analytic conclusions.

1. THE WEIGHT-ERROR CORRELATION
MATRIX (WECM) AND THE INDEPENDENCE
ASSUMPTION

An adaptive filter is designed to imitate some actual or
hidden reference filter such that it gradually moves from
an arbitrary unadapted state in the direction of the refer-
ence filter. This “initial learning” goes on far away from the
adapted state. For the common algorithms such as the LMS
algorithm studied in this paper the final stage of adaptation
exhibits a different pattern. Then the theoretically deter-
mined tuning of the adaptive filter known as the ”Wiener
solution” is not ultimately reached as a limiting value, but
turns out to be superimposed by persistent random fluc-
tuations. Their amplitude is coupled with the adaptation
rate in the sense that a fast adaptation involves large fi-
nal parameter fluctuations of the adaptive filter. The free
constant controlling the combination adaptation speed +
parameter fluctuations is called the adaptation constant p.

In this paper we study the parameter or weight fluc-
tuations for the well-known LMS algorithm applied to the
common FIR filter structure. Under steady-state conditions
{constant reference filter, stationary excitation of the adap-
tive filter) the second-order statistics of the weight fluctua-
tions are characterized by a correlation matrix. Its diago-
nal terms represent the squared amplitudes of the pertinent
fluctuations, whereas the off-diagonal entries stand for the
correlations between pairs of weight fluctuations. Since we
are dealing with the deviations from the Wiener solution,
the correlation matrix is usually referred to as the ”weight
error correlation matrix” WECM, denoted by V.

In the current literature V' is throughout determined
with the aid of an "independence assumption” stating sta-
tistical independence of successive input vectors. Such an
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assumption can be well argued for a “true” vector signal
like that emerging from a sensor array. In the case of an
FIR filter consisting of a tapped delay-line fed by a scalar
input signal the input vector is made up of successive val-
ues of the scalar signal and, as such, has a more artificial
nature. Within an updating cycle the various vector com-
ponents are shifted to the next place with the last com-
ponent removed and the first component renewed. Thus,
there is a strong deterministic coherence between succes-
sive input vectors clearly conflicting with the independence
assumption. Nevertheless the assumption is in common use,
particularly because of the provided analytical convenience
and the reasonable agreement with measured results {1-5].
To be sure, recent work [6,7] avoids the independence as-
sumption but it has not yet yielded significant analytical
results. '

In this paper we develop an iterative approach with-
out the independence assumption finally leading to a power
series of the WECM in terms of the adaptation constant.
However, only the first few terms of the series are actually
determined so that the present analysis should be indicated
as a ”small-signal theory”, valid for small adaptation con-
stants. There are no basic restrictions with respect to the
spectral distributions or the probability distributions of the
exciting signals, but special assumptions (whiteness, nar-
rowband, Gaussian) can considerably simplify the results.

A scalar stationary, zero-mean signal zj is assumed to
simultaneously excite a fixed FIR-filter with weight vector kb
and the adaptive filter under consideration with the time-
varying weight vector w,. For convenience, both vectors
have the same dimension M. The output of the reference
filter is contaminated by an additive noise ng, statistically
independent of zx and, like zx, stationary and with zero
mean. By taking the difference between the sum signal and
the output signal yx of the adaptive filter we form the error
signal ex, which controls the adaptation algorithm.

For further use we define the M x 1 input vector as
Z; = (Tk,The1,-++,Zk—M+1)", so that the outputs of the
reference and the adaptive filter can be written as A‘z,
and w, z,, respectively. Further, the weight error vector is
defined as v, = w, — h so that the error signal becomes

ek = Nk +E£k — Yk =N — 222.:«
The LMS algorithm is given by

Wiy = Wi + 2puerLy
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so that the weight error satisfies the state equation
Vg1 =% — Z#Ekﬁil’.k + 2pnkzy, (1)

which is the starting point for the determination of the
WECM
V=E{gk22}. (2)

2. NORMALIZATION AND
GENERALIZATION OF THE STATE
EQUATION AND ITS SOLUTION BY

ITERATION

Next we absorb the adaptation constant into the pertinent
signals through introducing normalized signals /2unk and
+/2nz, which, for sake of simplicity, are again denoted by
nk and z,, respectively. This way (1) passes into

t
Vppr = Yy — ExZp¥y + Nk (3)

Notice that we have not actually lost a free control param-
eter. The former freedom of choice for u is now replaced
with the freedom to choose the power of the input signal

P = E{z}}. (4)

(In this sense the need for the adaptation constant can be
questioned at all, unless the input signal in (1) is normalized
in amplitude). State equation (3) is a representative of a
wider class of the type

Zpyr = — Ren + £, (5)

where Ry is a symmetric, positive (semi-)definite time-varying

M x M matrix and f, is an (M x 1) excitation vector.

These quantities are uncorrelated, stationary random sig-
nals with E{f } = 0. Indeed, in our special case Ri be-

comes the positive semi-definite dyadic product z, z}, while
E{f.} = E{nx}E{z,} = 0 holds with all entries of R
uncorrelated with those of ik, due to the statistical inde-
pendence of ng and zx. Contrary to ik, the matrix R
does not have zero mean. The mean value R = E{Ri}
(called ”correlation matrix” in our case) is throughout pos-
itive definite (only in exceptional cases it is semi-definite).
The local (semi-)positiveness of R admits an interpreta-
tion of the term (—Rkw,) in (5) as a time-varying system
damping. Without that term (5) would represent an ideal
integrator (in continuous-time terminology), which has to
be reckoned among the unstable systems.

For Rr # 0 and thus R # 0 the instability is removed in
the sense that the solution v, of (5) no longer contains an in-
finite zero-frequency component. For a small R, the weight-
error v, contains strong low-frequency components so that
v, is a slowly varying signal with weak high-frequency com-
ponents superimposed. This statement leads to the funda-
mental proposition that for R — 0 the time-varying Rx in
(5) can be replaced with its constant mean value R without
noticeably affecting the solution v,. In other words, the
solution a, of the modified state equation
~ Ro, + i £ (6)

Qppy = O

1The freedom to choose the power of ny is of no special in-
terest, due to the linear dependence of v, on ny.

is an approximation of v, such that v, — a, for R — 0.
The truth of this statement can be supported by the fol-
lowing heuristic reasoning. For P — 0 implying R — 0 the
v, fluctuations become so slow that in the product R, in
(5) the second factor may be considered constant in some
finite discrete time interval of length n: v, =~ v. Adding
the equations (5) pertaining to that interval then leads to a
large-scale updating mechanism. The crucial term 3 Riw,
can then be replaced with (3 Rk)v ~ nRuy, where, due
to ergodicity, the time average has been replaced with an
ensemble average. For this to be true the length n of the
time interval has, of course, to be sufficiently great, which
is permitted if R is sufficiently small. The ”proof” is com-
pleted with the observation that the expression nRy is also
obtained if for all & the time-varying Ry is replaced with its
average value R, as is done in (6).

Thus for R — 0 we can solve the simpler difference
equation (6) with constant coefficients rather than the time-
varying problem (5). The statement ” R is small” amounts
to ” P is small” or (in the original terminology) ” u is small”;
throughout conditions under which v, can be approximated
by a,. An attractive concomitant feature of this approx-
imation is that a, can be used as starting point for an
iteration generating a whole set of solutions of (5) whose ac-
curacy increases with increasing iteration order, or, stated
otherwise, whose domain of validity 1 mcreases, viewed as a
function of R.

The iteration yields v, in (5) as a sum of partial func-
tions

y‘k=gk+£k+1k+“" (7)
of which the previously found g, is the leading term. After
introduction of the zero-mean matrix P, = Rx—R, insertion
of (7) into (5) yields

—k+1+ﬁk+1 k+1+”'
= (- R 8+, 4 )
—Play +B, + )+ 1, (8)

Appropriate -assembling of equal-order terms yields the it-
eration set

%y = (- Rla, + £,
Biyy = U-R)f, — Pea,
- = (I-R)y, - PB, (9)

Lr41

The first equation (equal to (6)) determines o from f,,

after that B follows from ¢, Y follows from E etc. Thus
we have the chain f — @, — ﬁ e PR in which for
sufficiently small R the individual terms decay to such a
degree that the series (7) converges and thus can be trun-
cated after a sufficient number of terms. Observe that all
difference equations (9) belong to the same type, so that the
same (linear, shift-invariant) operator applies to the various
signal transformations:

o = L{f,}
8, = L{~—Pra,}
lk = E{—Pkék} (10)
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This operator can be explicitly written in the form

L{f,y= > Hif,_

o =
je—oo
Hy = ea(I-RY7, (11)
0 for 7<0,
& = {1 for j>0.

Notice that the matrix impulse response H; starts at j =1,
so that only past values of f contribute to C{f }

The recursion mechamsm transforms the tlme-va.rymg
parameter R in (5) into a set of excitation functions (—Pra,
(—Pkék), etc. serving as source terms in simple constant-
coefficient state equations. The latter represent an operator
L{.} with low-pass character whose cut-off frequency is ex-
tremely low for R — 0 corresponding to very slow variations
of the operator’s output signal.

Without going into details (see [8]) we maintain that in
the chain f — o, — ﬂ -, - the individual recursion
terms decrease such that the ratio of subsequent signal pow-
ers is in the order of P (which is proportional to R). With
f, = nxz, and Ri = z,zt we then have E{nl} = O(1),
E{f'f,} = O(P), E{ala,} = O1), E{8'8,} = O(P),
E{l;lk} = O(P?), etc. (The first statement comprehends
a normalization of all powers with respect to that of the ref-
erence signal). Clearly the operator £{.} has an amplifying
property with a power amplification factor proportional to
P~!. According to (10), this amplification is overcompen-
sated by the multiplicative factors (—Px) contributing an
attenuation proportional to P?, which ultimately results
in a net attenuation per iteration cycle proportional to P.
This way the convergence of the iteration is guaranteed for
sufficiently small P values.

3. SERIES EXPANSION OF THE WECM

With (7) we can write the required WECM in the form

V=FE{yu} = E{(an+8,+7,+ Naw+ 4, +2,+)}

12)
which, in elaborated form, equals a sum of partial corr(ela-
tions between the various signals a, ék’ Yy Each of
these partial correlations is an O(P") term, where the low-
est exponent v = 0 occurs for the combination E{e,ca}},
while v increases with increasing iteration order of both sig-
nals involved. Without proof (cf. [8]) we have E{a,a;} =
O(1), B{g,ei} = O(P), BE{auf} = O(P), E{y,a;} =
O(P), E{e;7,} = O(P), E{f,8,} = O(P), E{,a;} =
O(Pz) E{ak5‘} =O(P?), E{Ekalc} =O(P?), E{aye;} =
O(P?), E{1,B,} = O(P*), E{8,7,} = O(P*), E{8,8,} =
O(P?), E{gkﬁt} = O(PY), E{lklk} O(P?), while all
other combinations yield orders in P higher than 2. Elab-
orating (12) and combining equal-order terms in P then
yields a series expansion of V:

V=Vo+WP+VP"+... (13)

Notice that (in our normalized notation) for a vanishing
input signal with P — 0 a nonzero V = V; is found, clearly
originating from the combination E{a,a!}.

)

For a given spectral and probability distribution the
matrix coefficients Vo, V1, V2, -+ can be determined in a
straightforward way, although the tedious analysis can yield
rather complex results. Therefore we confine ourselves to
some manageable special cases. For the most general distri-
bution in frequency and amplitude we determine only V5,
while the combination (Vo + V1 P) is analyzed for 1, Gaus-
sian and nx white and, finally, (VZ)+V1P+V2P2) for z and
nx white and zx Gaussian. Only the results are presented
here, details will be published elsewhere [8].

3.1. The general case: z; and nx coloured

For the general excitation with arbitrarily coloured signals
we determine V; as the solution of the Lyapounov equation

RV +%R = Y NOURO, (14)
i
NO = E{ngni-i}, NO = N,
RO = Pz}, B =R

This recently published result [7] seems to have not yet
received too much attention. For nyx white (14) admits a
closed-form solution, viz. Vo = NI/2, representing a set
of equal-power, uncorrelated weight errors. In the more
general case the Toeplitz structure of R and of the right-
hand sum puts restrictions on Vo, among which a symmetry
round the side diagonal (8], cf. Fig. 1. Further, the output
signal yx in the zero-order approximation can be substan-
tially correlated with nx. Contrary to common belief, the
error signal ex can even have a lower power than nx, due to
this correlation.

equal correlations
— T~
1 =1

\ / delay line
equal
energies

Figure 1: Symmetry in the correlation matrix Vo (entries
denoted by x are equal).

3.2. White reference signal nx, Gaussian input sig-
nal zx

Under these assumptions we find the combination

Yo+ ViP = IN{I(1+ s MP)+ R}. (15)
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In this first-order approximation, V has a Toeplitz struc-
ture with off-diagonal elements proportional to those of R.
Then all pairs of neighbouring elements have the same cor-
relation and the same result holds for all pairs with some
given distance on the delay line (Fig. 2).

equal correlations
[ O s T e Y e B e W s W e W

3 L I i 1 i i 1 i
¥ T T T T T T T T

delay line
\ equal correlations

Figure 2: Symmetry in the correlation matrix (Vo + V1 P)
for a white reference signal.

3.3. White reference signal ni, white and Gaussian
input signal zx

In this situation we obtain

Vo+ VP +VP? =

2
% {[2 +P(M+2)+ %—(M +2)°] = 2P°T — 4P2S} i
(16)
0 01 01 0
00 01 0 1
1 000 1 0
T = 01 00 0 1
1 0100 0
01 01 0 0
0 0
1
2
S = 3
) (M -1)

Here we observe correlations between pairs of even-numbered
weights and between pairs of odd-numbered weights, but
not between mixed pairs. Further, the weights decay in
amplitude along the delay line.

4. CONCLUSIONS

The weight-error correlation matrix has been determined
as a power series in terms of the input power or (what

amounts to the same) in terms of the adaptation constant.
The strongest and most surprising effects are found if the
input and the reference signal are coloured. Then in the
zero-order approximation the WECM satisfies a Lyapounov
equation yielding a set of weight fluctuations with diverse
amplitudes and substantial mutual correlations. For a white
reference signal the amplitudes become equal (even in the
first-order approximation) and the mutual correlations are
weak first-order effects. If also the input signal is white,
the zero- and first-order theory predicts equal-power, un-
correlated weight fluctuations, while small correlations and
a slight power decrease along the delay line are found in
the second-order theory. All effects are confirmed by sim-

_ ulations [8] which have to be prepared with great care be-
* cause otherwise the weak first- and second-order effects are

obscured by statistical uncertainties.
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