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ABSTRACT

In this paper, we derive new adaptive step size algo-
rithms for two general classes of modified stochastic
gradient adaptive filters that include the sign-error,
sign-data, sign-sign, and normalized gradient adap-
tive filters as specific cases. These computationally-
simple parameter adjustment algorithms are based
on stochastic gradient approximations of steepest
descent procedures for the unknown parameters.
Analyses of the algorithms show that the station-
ary points of the steepest descent procedures yield
the optimum step size values at each time instant
as obtained from statistical analyses of the adap-
tive filter updates. Simulations verify the theoreti-
cal results and indicate that near-optimal tracking
performance can be obtained from each of the adap-
tive step size algorithms without any knowledge of
the rate of change of the unknown system.

1. INTRODUCTION

Least-mean-square (LMS) adaptive finite-impulse-response
(FIR) filters have proven to be extremely useful in 2 number
of signal processing tasks. However, for many types of real-
world input data, LMS adaptive filters suffer from a slower
rate of convergence for a given steady-state mean-square er-
ror as compared to the behavior of recursive least-squares
adaptive filters. Consequently, several computationally-
simple methods for improving the convergence properties
of the LMS adaptive filter have been proposed [1, 2, 3, 4].
In general, these methods specify a procedure for adjusting
the algorithm step size to obtain fast convergence when the
error in the adaptive filter coefficients is large and to ob-
tain a small mean-square error when the error in the adap-
tive filter coefficients is small. Most of these approaches
seem reasonable from a heuristic standpoint but satisfy no
specific optimality criteria. A notable exception are gra-
dient adaptive step size algorithms that adjust the step
size according to a stochastic gradient descent procedure
on the squared output error [2, 3, 4]. It is shown in [3]
that these algorithms can provide near-optimal tracking
performance under a standard Markov model for the non-
stationary unknown system. Interestingly, the algorithm
was first developed to improve the convergence properties
of the backpropagation algorithm for multilayer feedforward
neural networks, where it has been termed the “delta-delta
rule” [5].

In some situations, it is desirable to modify the LMS algo-
rithm update, either to simplify its implementation in hard-
ware [6, 7] or to improve its robustness and performance in
the presence of non-Gaussian or time-varying signal statis-
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tics [8, 9, 10, 11]. Adaptive step size procedures for these
modified algorithms remain largely unexplored.

In this paper, we present new adaptive step size proce-
dures for the two families of modified stochastic gradient
adaptive algorithms given by

Wisr = Wi+ pifex)G(Xk) 1)
_ flex)G(Xk)
Wit = Wi+ —__ﬂk AT (2)

where Wy = [wy x---wr x]7 are the L coefficients of the
adaptive filter at time k, X4 = [zx---zx—141]T are the
data elements in current filter memory, ex = dx — W2 X is
the adaptive filter error, dix is the desired response signal.
px and S are adaptive parameters, || - || denotes a suit-
able vector norm, G(-) is a vector-valued nonlinearity, and
f() is an odd-symmetric scalar nonlinearity. By specifying
the nonlinearities f(-) and G(-), the vector norm, and the
value of ¢, equations (1) and (2) can be used to describe
a number of useful adaptive filter algorithms, including the
sign-error, sign-data, sign-sign, and other quantized state
adaptive algorithms [6]; the normalized LMS (NLMS), sign-
data NLMS, sign-error NLMS, and other normalized adap-
tive algorithms [9, 10, 11, 12]; and Newton-type algorithms.
For the algorithm families in (1) and (2), we derive simple
data-adaptive procedures for adjusting the step size param-
eter ux and parameter Sk, respectively, to achieve both fast
tracking in nonstationary environments and a low excess
mean-square error (MSE) in near-stationary environments.
Our derivation is based on the following stochastic gradient
descent procedure, as given here for px in (1) (2, 3] (the
expression for 8y is analogous):

pacﬁ(ek), (3)

b = k-1 —
# Opk—1

where ¢(-) denotes the relevant cost function to be mini-
mized and p is a convergence parameter. These step size
algorithms are found to be extremely simple to implement.
Moreover, by suitable choice of the cost function ¢(-), the
adaptive step size algorithm is robust to large errors in the
desired response signal, a situation for which the algorithm
in [2, 3] is known to perform poorly [4].

2. DERIVATION

In this section, we derive the step size update for i explic-
itly; the derivation for the update for B is similar. Consider
the step size update given by (3). Evaluating the partial
derivative in (3) using the chain rule gives

8a$(ek) a¢(ek) 8ek
Oppk -1 der 3#1:—1‘

(4)
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Following the notation of [8], we define f(ex) = d¢(ex)/dex.
We now substitute Wi = Wiy + pr—1f(er—1)G(Xr-1)
into the expression for ex, which gives

er = dx = Wi_1 Xk — piee1 f(ek—1)G(X-1)"Xk.(5)
Thus, the second partial derivative in (4) is

dex
Opk—1

—f(ex=1)G(Xx-1)"Xx. (6)

Combining (3), (4), and (6) yields the step size update as

pe = pre-1+pf(en) flex—1)G(Xe1) Xk, (7)

where p is a convergence parameter for the step size.

Remark 1: As is the case for the LMS adaptive filter step
size update [3], determining the range of p to guarantee sta-
bility of the coupled system of equations in (1) and (7), even
when the statistics of the system are completely known, is
a difficult task. However, it is possible to limit the range of
values that px can have to a set of values that are known
to guarantee convergence of the algorithm. For example,
the mean-square error of the sign-error adaptive filter with
fixed step size will remain bounded for a wide range of sta-
tistical conditions if 0 < p < oo [7]. Thus, if ux produced
by the step size update is negative, we conjecture that the
sign-error adaptive algorithm with adaptive step size can
be stabilized by setting the step size equal to a value € > 0
whenever the update in (7) causes px < 0. Our experience
has shown that the upper bound check required for the LMS
adaptive filter with gradient adaptive step size is not nec-
essary for the sign-error adaptive filter version. This issue
is currently under investigation.

Remark 2: As in the case of the adaptive step size algo-
rithm for the LMS adaptive filter, there exist input signals
that will cause G(Xx—1)TXx to be zero for all k [3]. In
such cases, the step size will never be updated. However,

for most real-world input signals, the probability of such a-

situation occurring is extremely small.

Remark 3: In some situations, it may be beneficial for im-
plementation reasons to approximate the adaptive step size
update in (7) as

pe = pr-1 + pf(exdf(ex—1)G(Xn-1)TG(Xx). (8)

For example, in the sign-sign algorithm for which f(ex) =
sgn(ex) and G(Xk) = sgn(Xk), the update in (8) can be
implemented using a simple up-down counter, as the value
of sgn(Xx—1)Tsgn(Xx) is always an integer.

The derivation of the update for fx in (2) is similar to
the above derivation for px. The resulting update is

f(ek)f(ek—l)G(Xk—l)Txk (9)
Gror 1 Xaall?

For coefficient stability, the valid range of Bx depends on
the algorithm form. For the NLMS algorithm, stability can
be guaranteed for Bx > 0.

3. IMPLEMENTATION

We now consider the implementation costs of the parameter
updates in (7), (8), and (9) in the context of FIR filtering.
Because of the shift-input nature of the input data vector,
these updates can be easily calculated in most cases using

B = Brx—1—p

Algorithm Fized Param. Adaptive Param.
# Mults. | # Adds | # Mults. | # Adds
sign-error 2L 2L 2L +3 2L +3
sign-data L+1 2L L+4 2L 43
sign-sign L 2L L+1 2L +1
3L+2 [, .. | 2LF9 |,
NLMS (1_) 2L +2 (1_) 2L+ 6
sign-error 2L 2L +6
NLMS (1=) |2+ ey | 20H6
sign-data L L+6
NLMS (1) |2+ 1y |2LH+S6

Table 1: Computational complexity of adaptive algorithms.

only a few mathematical operations. For example, consider
the case in which G(Xx) = [g(zk) -+ g(zr—r1+1)]T, where
g{(*) is a scalar nonlinearity. Then, the scalar quantity b. =
G(Xk_l)TXk can be calculated from its previous value as

be = bro1 4+ zrg(zr—1) — Th-rg(Tr-1-1). (10)

Equation (10) is critically-stable but can be reinitialized
every L iterations without any additional multiplies. The
update for G(Xx-1)TG(Xx) used in (8) is similar. For the
update of 3, consider the case where || - || denotes the L,
norm. Then, it is natural to define ax = Bk + ¢k and update
Bk and cx according to .

flex)flex—1)b

B = Pro1—p—————— (11)
Q-1
ck = ck-1+|zel? = |ze-1]% (12)

Since the quantity 1/ax is used in the filter coefficient up-
date, no additional divides are needed to implement the
adaptive parameter update.

Table 1 lists several adaptive algorithms and compares
the number of multiplies, adds, and divides necessary to
implement both fixed and adaptive parameter versions. As
can be seen, the additional operations required per iteration
to implement the adaptive parameter versions are few and
do not depend on the filter length L, making them amenable
to real-time implementation.

4. ANALYSIS

The adaptive step size algorithms described above are based
on an approximate gradient descent procedure. What op-
timality properties, if any, do these algorithms possess? To
answer this question, we first determine the optimum step
size sequences for these algorithms using the statistical anal-
yses presented in [8, 9, 13]. We also assume that the desired
response signal is generated from a nonstationary model
such that

T

de = cht,kxk + ng (13)

Woptks1 = Woprx + Mg, (14)

where ny is an ii.d. noise sequence with zero mean and

variance ¢2 and My is an i.i.d vector sequence with zero
mean and covariance matrix o2 1.

Due to space limitations, we consider general error crite-
ria adaptive algorithms of the form [8]

Wit = Wi+ popes fer) Xk, (15)

where f(-) is an odd-symmetric nonlinearity and {pop: x} is
an optimum step size sequence to be determined. It can be
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shown (cf. [8], eq. (48)) that the excess MSE at time k + 1
is given by

Ee:r,k+1 = fcx,k has 2l‘opt,k E[fl(ek)]E[VZ‘szk]
+ 1ot n E[f? (ex) Xk RXk] + o2, tr[R].(16)

where Vi = Wi — Wo, x and R = E[XiXT].

To derive the optimum step size popt,k, we can follow the
method of derivation presented in [9]. From (16), we can
view the quantity €.z x+1 as a quadratic function of the step
size popt k. 1o choose an optimum step size to minimize this
quantity, we take 9€.z,k+1/O0topt,x and set the result equal
to zero. This operation gives pop:,x as

E[f'(ex)|E[VL R V]
E[f2(ex) XK RXy]

(17)

Hopt k

Now, consider the adaptive step size procedure given in
(7) with G(X-1) = Xk—1. It can be shown that ex can be
written as

€r = C’{k - Hk-li?k (18)
de = mne— Vi Xe — MI_ X, (19)
Iy = f(ek_] )Xz_lxk- (20)

Substituting (18) and (20) into (7), we get

Br = pr-1+ Pf([[k — Bk-1Zk)Tk. (21)

Examining equation (21), we see that it is in an explicit
stochastic gradient descent form, in which px_1 is the pa-
rameter to be adjusted so that ux_17x follows dx.

Asin the LMS algorithm, we can relate the update in (21)
to a steepest descent procedure for the parameter psp x,
that is simply the expectation of (21) over the probability
densities of Vi_1, Xk, Xk—1, Mk_1, and nx. This proce-
dure is

Bspx = pspw-1+pE[f(dk — psp r-12k)Tx]. (22)

Despite the apparent difficulty of evaluating the right-hand-
side of (22), it is relatively straightforward to determine the
stationary point l‘(.;z)) of this steepest descent procedure,
which is simply given by

w _  Eldiy] 23
Bsp Ez2] (23)

Considering the numerator of (23) and using a result from
Appendix A of [8], we evaluate it using our assumptions as

Eldids] ~ EVILEViLE[f ()]l (29)
From (20), we can express E[Z%] as

E[zi] = E[ff(ex-1)Xi_1XxXFXs-1]  (25)

= E[f*(es-1)Xi-1 RX k1], (26)

where we have used the independence of X from all other
quantities in the expression.

Substituting (24) and (26) into (23) yields the necessary
expression for the stationary point as

Il(k) - E[VZ—1 R2Vk-l]E[f’(€k_1)]
7 E[f*(ex—1)X7—; RXx_1]

(27)
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Figure 1: Performance of optimum and gradient step size

sign-error adaptive filters, nonstationary unknown system.

Comparing equations (27) and (17), we see that pope k-1 =

I‘(;z))- This implies that the optimum step size as found from
analysis is ezactly the same as the stationary point of the
steepest descent iteration on which the gradient adaptive
step size algorithm is based'. In other words, for the kth
iteration of the adaptive filter update, if the gradient adap-
tive step size algorithm converges to to the minimum point
of its associated steepest descent cost function, then the
resulting value of px would be the optimum value pope,x—1-

In practice, the step size pux will not converge to pope,k—1,
for the following reasons. 1) Because (7) is a stochastic gra-
dient approximation to a steepest descent procedure, the
step size can only converge to its optimum value in expec-
tation, and its actual value will continue to fluctuate about
its optimum value. 2) During the transient stages of the
adaptation of the adaptive filter, the level of excess MSE
is constantly changing, and therefore the optimum value
Bopt,k is constantly changing. Thus, the adaptive step size
algorithm must attempt to track these changes in the step
size, which results in a lag error. However, if the level of
excess MSE stays nearly fixed, as in the case of tracking a
slowly-moving unknown system, then the adaptive step size
can achieve near-optimal performance.

We have verified this form of optimality for (7) for the
case {f(ex) = ex, G(Xk) = [g(z&) --- g(zx-1+41)]"} (non-
linear data algorithm) when z is an i.1.d. input sequence,
using analytic results from [13]. Thus, these adaptive step
size procedures attempt to solve a well-posed optimization
problem, in contrast to other heuristic procedures.

5. SIMULATIONS

We now examine the the behavior of the adaptive step size
algorithms through simulation of a nine-coefficient system
identification problem with Wfp,p =[123454321]/s.
The signals {zx} and {nk} were chosen to be zero-mean
Gaussian-distributed with E[zxzx—;] = a¥! and o2 = 0.01.
The coeflicients were allowed to vary according to the model
in (14) where M is Gaussian-distributed with covariance
matrix 02,1, as specified. One hundred simulations were
run and the results averaged in each case.

1Because the steepest descent algorithm is based on an a pri-
ori error criterion, the sequence u(k) lags popt k—1 by one time
step. The effect of this lag on the algorithm’s performance is

minimal compared to other factors.
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Figure 2: Performance of gradient step size LMS and

NLMS algorithms for a sign change in coefficients, highly-

correlated input data.

Figure la shows the convergence of the excess MSE for
the gradient step size sign-error adaptive filter with a =
0 and o2, = 0.0001. For comparison, we also show the
theoretical and simulated performance of the algorithm in
(15) with the optimum step size sequence piopt,x. As can
be seen, the optimum step size algorithm gives the fastest
initial convergence, as expected. Both algorithms achieve
nearly the same steady-state error power while tracking.
From the simulations, the steady-state excess MSE for the
gradient step size algorithm is &, = 0.0224, about 15%
greater than the optimum step size algorithm. Figure 1b
shows the associated step size values for each algorithm. We
see that the gradient step size algorithm does not follow the
optimum step size sequence very closely initially. However,
both algorithms achieve the optimum step size for tracking,
given by limg—eco fopt,k = 0% /0% = 0.01 for this situation
[7]. Note that the optimum step size algorithm requires
complete knowledge of the signal and system statistics and
thus cannot be implemented in most practical situations.
The adaptive step size algorithm achieves similar steady-
state performance without this knowledge.

We now compare the performance of the gradient adap-
tive step size LMS and NLMS algorithms when the un-
known system coefficients undergo a sign change at itera-
tion k = 1000. Figure 2a plots the total weight error power,
given by E[V] V], for the two algorithms, where a = 0.95,
o2, =0, po = 0.01 and p = 0.0005 for the LMS algorithm,
and fBo = 0 and p = 20 for the NLMS algorithm. To main-
tain stability of the LMS algorithm, the algorithm’s step
size was limited to the range [0, 0.03] as determined by trial-
and-error for this data. As can be seen, the adaptive step
size NLMS algorithm provides faster convergence in this
case because the LMS algorithm’s step size must be Hm-
ited to a very small range in order to maintain stability for
this data. Figure 2b shows the average value of S for the
NLMS algorithm. The algorithm’s behavior is intuitively
pleasing, as the small value of B yields fast convergence
both initially and after the coefficient values change.

The sign-error algorithm’s robustness properties are well-
known {8, 10, 11]. Figure 3 shows the convergence of the
gradient adaptive step size sign-error and LMS algorithms
for the case a = 0.9, 02, = 0, po = 0.01, p = 0.00002, in
which dropouts in the desired response occur with proba-
bility 0.01. The sign-error adaptive algorithm clearly out-
performs the LMS algorithm, due to the former algorithm’s

o,
o
4

—— LMS
~ - sign-error

-

o
T

Om
v
"

F

Total Waeight Emor Power

o
(9

07000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of iterations

Figure 3: Performance of gradient step size sign-error and

LMS adaptive filters, dropouts in desired response signal.

immunity to impulsive noises.

6. CONCLUSIONS

In this paper, we have presented new gradient adaptive
step size procedures for several types of adaptive filters.
These systems exhibit enhanced performance in situations
where the LMS adaptive algorithm is known to perform
poorly, such as with highly-correlated input data and in
the presence of impulsive disturbances. Theoretical anal-
ysis and simulation show that the algorithms can achieve
near-optimum tracking performance without knowledge of
the speed of variation of the unknown system.
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