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Abstract—Gradient-descent adaptive algorithms are
among the most widely used in current practice, with many
different variants that generally fit into two major groups:
one group includes algorithms that are especially suited
for FIR (or finite-impulse-response) modeling, while the
other group includes algorithms that are tailored for IIR
(or infinite-impulse-response) modeling. In the first group,
the regression (or data) vectors do not depend on the un-
known parameters, which leads to convenient linear models
that often facilitate the analysis of the algorithms. In the
second category, on the other hand, the regression vectors
are dependent on the unknown parameters, thus giving rise
to nonlinear functionals and to a richer structure that re-
quires a more thorough analysis. This paper focuses on a
widely used adaptive IIR algorithm, the so-called Feintuch’s
algorithm, and provides a study of its robustness, stability,
and convergence properties in a deterministic framework.

I. INTRODUCTION

This paper focuses on a particular adaptive algorithm of
gradient-descent type that is often used in IIR modeling,
the so-called Feintuch’s recursion [1] (see also the survey
papers [2,3]). It is well-known that in the IIR context, cer-
tain nonlinear functionals arise that lead to error surfaces
with possibly multiple local minima, and the main chal-
lenge then is to verify whether a given algorithm exhibits
global convergence or not (i.e., relative to a global mini-
mum). One of the contributions of the present work is to
exploit an intrinsic feedback structure that is present in
the nonlinearities in Feintuch’s case, along with a so-called
small-gain theorem (widely used in system theory), in order
to provide convergence and stability analysis for Feintuch’s
algorithm. Connections with the so-called strictly positive
real (SPR) condition that is often cited in the literature will
also be clarified.

The following notational conventions will be useful to
remember. We shall use small boldface letters to denote
vectors and the symbol “+” for Hermitian conjugation (com-
plex conjugation for scalars).
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II. FEINTUCH’S ALGORITHM

Consider a linear time-invariant system that is described by
a recursive (i.e., pole-zero or IIR) difference equation of the
form

M, My -1
y(i) = Y ary(i-B)+ Y bez(i-k) (1)
k=1 k=0

[y % 1[5 ] = 0

,aM, } and b = col{bo,...,bnm,—1} are
column vectors, while x; = [ z(3) z(i — My + 1) ]
and yi—; = [ y(z —-1) y(z — Ma) ] The row vec-
tor u; = [ Vi1 Xi } is called the data vector. Also, w
is a column vector that contains the parameters a and b,
and will be referred to as the weight vector. The following
widely used compact notation, based on the shift operator
g defined by ¢~ '[z(k)] = z(k — 1), will also be used in the
sequel:

where a = col{ay,...

W) = L), @)
where A(¢g™!) = Zg‘l axg™*, B(g™') = :2’0—1 brg™*,

and the ratic B/(1 — A) is further assumed irreducible.

The problem of interest is the following: given noisy
measurements {d(-)} of the output of the system, {y(-)}, in
response to a known input sequence, {z(-)}, say

d(i) = y(i) + (i) = ww + v(d), ®)

where v(i) denotes the measurement noise, estimate the
system parameters a and b (or w) so as to meet a certain
optimality criterion. In the literature, this criterion is of-
ten motivated in a stochastic setting’ by defining the error
surface (in the output-error formulation) in terms of the
variance of the noise mismatch {v(-)},
2
- (9

1The stochastic argument is used here as a motivation and
for review purposes. We shall shortly drop all stochastic as-
sumptions and approach the problem from a deterministic point
of view.

ai) - 29Dy
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The Jo(w) is clearly a nonlinear functional of the unknown
parameters {ax,bdx} and it may thus exhibit several local
minima. An approximate solution that seeks to minimize
Jo(w) over {ax,bs}, and which is based on instantaneous-
gradient ideas, is Feintuch's recursion [1]. It takes the fol-
lowing form: start with initial guesses {g(—1), §(~2),...,
§(—Ma)} and compute successive estimates §(1), for i > 0,
via the recursion:

M, My—1
96 = Y ar(i-Di—k)+ Y bali—1z(i— k),
k=1 k=0
= [ Vi-1 Xi ] [ la)'._—l ] =0,Wi—_1,
\ . ; t—1
u,

where {ax(i — 1),bx(i — 1)} denote estimates of {ax,bx} at
time (i~1), and yi-1 = [ §(i— 1) §(i— M,) ]. The
parameter estimates are, in turn, updated as follows:

Wi = Wi +pi] [d(i) —diw_q], (5)

with initial guesses w_; and y_1, and where u is a positive
so-called step size.

Although claimed to be a stable algorithm in [1], ex-
perimental results in [4] showed that the algorithm could
lead to incorrect solutions as well as exhibit an unstable
behaviour. One of the contributions of this paper is to
provide deterministic conditions on the data, and on the
recursive part (1 — A(¢™')), in order to guarantee conver-
gence and [ —stability of the algorithm in a sense precised
in Theorem 2 below.

But some aspects of Feintuch’s recursion, which will be
very relevant in future discussions, should be stressed at
this point. First, it is immediate to verify that the d(i)
can be re-expressed as (compare with (3) where u; is here
replaced by 10;)

d(i) = aw + (1), (6)
where the modified noise term #(1) is related to the original
noise sequence v(i) as follows:

o) = (@) + Alg")y() - §(3)]

AGT) 50, (1)

= v(s) + T———zT(qu)

where é,(2) is defined by €a(3) = Qi(W — Wi1) = W, _;.

III. LocAL PASSIVITY RELATIONS

It will be shown in the sequel that relation (7) leads to
an interesting feedback structure whose stability analysis
is facilitated. This is due to an existing contraction map-
ping that is characteristic of gradient recursions of the form
(5)-(6), as established in [5] by following a simple Cauchy-
Schwarz argument for vectors in an Euclidean space - see
also the last section in [6]. The relevant facts are briefly out-
lined in the sequel. In particular, the next theorem provides
a collection of so-called passivity relations that were shown
in [5] to hold at every time instant i, for all possible #(i) and

for all possible initial guesses w_; # w.? In the statement
of the theorem we use the symbols é,(3) = u:(w —~ w,) and
7(i) = [ = Jlas i3]

Theorem 1 (Energy Bounds) The following local energy
bounds always hold at each time instant i:

pIwW — willf + |€a(i)?

Ll <1,
pHlw —wisal + Jo(3)[?
|€a()® + 1é5(5)
g Tz S 1,
ptlw —wisa|F +[9(3)]
YDllw = wills + 1,017
; 12 YT )
YW = wioalff + [9()]
5 (2 5 (s 2
Eaf Flea+ D2

pHiw = wisallf + [9())?

where it is assumed that p||[Q||3 < 1 for the first three
bounds, while p < min {1/[[1‘1.’"%, 1/||ﬁ.‘+1”§} for the last
bound.

We may add that the above bounds also hold for time-
variant step-sizes u(1) and that the analysis provided in this
paper can be accordingly modified to accommodate this
case [5]. Also, the above local bounds show, on a step-by-
step basis, how the energies of the apriori and aposteriori
residuals, é,(i) and €,(s), compare with the energies of the
disturbances due to #(#) and to the weight estimation errors,
(W —w;_1) or (Ww—w;).

IV. A CONTRACTION MAPPING

Assume now that we run the gradient recursion (5) from
time 1 = 0 up to time N and that g |J&|? < 1 at each
time instant i. It then follows that the first inequality in
Theorem 1 holds for each 0 < i < N,

lea(D* < w7 = wica |l — p 7w — will§ + 16(0)* .

Summing over ¢ we conclude that we must have (we now
use the simplifying notation W; = w — w;)

pT NN G + T, feali)?
s W3 + 30, [666)2

The numerator of (8) is the sum of the energies of the
(modified) apriori residuals €,(i) over 0 < i < N, and
the energy of the final weight-error at time N. Likewise,
the sum in the denominator consists of two terms: the en-
ergy of the modified noise signal over the same time interval
and the energy of the weight error due to the initial guess.
Consequently, (8) establishes a global energy bound over
the interval of duration (N + 1): it states that the (block
lower triangular) matrix that maps the modified noise sig-

nals {#(i)}/L, and the initial uncertainty p=*/2W_; to the

(8)

2The case W_; = W (the true weight vector) is excluded so as
to avoid having a ratio with both zero numerator and denomina-
tor. However, here and in later places in the paper, we can avoid
this technicality by simply working all through with differences
rather than ratios. For example, the first ratio in Theorem 1 can
be rewritten as (™1 ||W — w;||2 + (€4 (i) [2) — (=Y |lw — Wiz |3+
[9(3)[?) < 0.
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modified apriori residuals {é4(1)}{L, and the final weight er-
ror g~ /%y is always a contraction mapping — see Figure 1
further ahead. This means that the 2—induced norm of this
mapping, denoted by 7w, is always upper bounded by one
(N Twllz,ina < 1) — the 2—induced norm is also written as
I|7v)|o due to connections with a frequency domain inter-
pretation that often arises in the control context. The algo-
rithm is thus said to be a robust algorithm. Alternatively, if
we denote by An{(w_,,?(-)) the difference between the nu-
merator and the denominator of (8), then we also conclude
that we always have, for any w_; and &(-),

An(wo1,5()) < 0. o

We shall now expand on the significance of the global bounds
(8) or (9).

V. STABILITY ANALYSIS: FEEDBACK
STRUCTURE

The convergence (to a local or global minimum) analysis
of Feintuch’s algorithm is still an open problem and has
been discussed rather controversially in literature (see, e.g.,
[4]). A standard statement, based on Popov’s hyperstability
theorem, is that convergence may follow if the recursive part
of the transfer function satisfies a strict positive-real (SPR)
condition (see, e.g., [7,8]), viz.,

1 1
Real{l—_A(_e—J“’—)}—§>0 for 0<w< 27 (10)
This condition has been used successfully for the so-called
HARF algorithm [10], which is a gradient-based version of
Landau’s scheme [7], but is only approximately true for
other filter structures, including Feintuch’s algorithm, mainly
because the regression vectors 1; are constructed differently.
In Feintuch’s case, predicted estimates §(-) are used while in
the HARF and Landau schemes filtered estimates are used,
as well as a different choice for the step-size parameter. The
discussion in this section exploits the contractive relation
(8) (or (9)), along with the feedback structure implied by
(7), in order to provide an exact condition (cf. (13) further
ahead) that will guarantee the I —stability and convergence
of Feintuch’s scheme in the sense defined in Theorem 2.

Motivated by (7), we let Fn denote the (N +1) x (N +
1) leading triangular operator that describes the action of
A/(1 — A) over the first (N + 1) samples of {éa(-)} (in the
absence of initial conditions). We can then represent the
mapping from {u~"/>W_s, v(i) o to {#™/*Ww, éa($) il
as a feedback cascade with Fxn in the feedback loop as in
Figure 1. Note that this is now a mapping from the original
disturbances {v(-)} rather than the modified disturbances
{#(-)}. By exploiting the fact that Ty is a contractlon (as
shown by (8)), one can establish the following result.’

Theorem 2 (l;—Stability and Convergence) Consider
Feintuch’s algorithm (5) and assume p|[i;||3 < 1 for every
i. Assume further that the original plant, B/(l — A), is
stable. If the following condition is satisfied,

3This can also be seen as an immediate consequence of a so-
called small gain theorem in system analysis {11].

—_t .
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FN g

f Initial conditions

Figure 1: Feedback structure of Femntuch’s algorithm.

I Twlloo | Falleo < 1, (11)

then the mapping from the disturbances {p_%v"v_l, v(-)} to
{éa()} is la—stable with finite gain in the following sense,

(12)

(71

N
T T lloo |1 Z 1o S Iw@E + B

1=0

S
p || Woal2 +

where Bl is a finite positive constant.

In the limit, if the noise sequence {v(-)} has finite en-
erqy, then the above bound, which also holds as N — oo, im-
plies that convergence is guaranteed, i.e., lim;_.o €4(i) = 0.

Two remarks are due here concerning condition (11) and
the convergence result. First, note that since it is already
known that || Tiw]jso < 1, then a sufficient condition for (11)
to hold is to simply require || Fn|[c < 1 or

A(e’”)

—— 0<w<2m.
TZ A(er9) <1, 0<w<2r (13)

max
w

It is easy to see that for (13) to hold, it is necessary that

1
0< R —_— 2.
< ea'l{l—A(e]“’)}<

That is, the real part cannot assume arbitrary positive val-
ues (compare with the SPR condition (10)).
As for the convergence result, recall that it follows from
(7) that
N ey 1 . s
y(3) - 9(3) = i_—.m[e“(')]'

Consequently, if é.(:) converges to zero then we also get

lim; oo §(1) = y{%). It also follows from the relation éa(i) =
(1-A(g™ Ny - (1= Alg™)E(H)), that §(-) cannot be-

come arbitrarily unbounded as time progresses since other-
wise the é,(-) may assume large values and the bound (12)
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in the theorem will then be violated. The boundedness of
#(-) is consistent and, in fact, a consequence of the assump-
tion u|[Qil|3 < 1. In this regard, the convergence statement
in the theorem should be interpreted to mean the following:
if the §(-) are assumed bounded then, under the conditions
stated in the theorem, the sequence {§(-)} is guaranteed to
converge to the sequence {y(-)}.

The boundedness assumption on {§(-)} can be relaxed
by allowing for a time-variant step-size u(7) in (5) — see also
[9]- In this case, the requirement

. 1

g
is replaced by u(i) < 1/(Jli]|3), at every i. It can then
be shown that a feedback structure similar to the one in
Figure 1 still applies but with a time-variant mapping Fn
in the feedback loop. The mapping will be time-variant
since it will depend not only on A/(1 — A) but also on the
time-variant step sizes {u(-)}. A sufficient condition for
stability would also require Fy to be contractive. These
extensions will be addressed elsewhere.

Note also that our derivation is based on the assumption
that the signals are deterministic, i.e. all kinds of signals
are allowed. In a stochastic setting, the signals are often
restricted to a certain class, for example white Gaussian
random processes. For this case, it is sufficient to require

that!

~ 2

A(e?)

1

— d 1.
o ) w <

VI. MINIMAX PERFORMANCE OF
FEINTUCH’S ALGORITHM

The global property (8) is valid for any initial guess w_; and
for any noise sequence 9(-), as long as p is properly bounded
{and assuming a non-zero denominator). One might then
wonder whether the bound in (8) is tight or not. That is,
are there disturbances {w_1,%(-)} for which the ratio can
be made arbitrarily close to one? The answer is positive. To
clarify this, we follow [5] and rewrite (5) into the alternative
form w; = w;_1 + pQ} [6a(2) + 9(¢)] . We can now envision
a noise sequence #(i)> that satisfies (i) = —éa(i), at each
time instant 7. In this case, Feintuch’s recursion trivializes
"to w; = w;_; for all i; thus leading to wy = w_; and the
ratio in (8) will be one. This means that the maximum value
of the ratio in (8), over the unknowns {w_; # w,#(-)}, is
equal to one,

plw = warll3 + 3000, 1)
=t w — woi |} + 0L, 1662
Alternatively, we also have

{An(w-1,9(:))} =0.

max 14
{W_1,o()} ( )

max
{W_1,9()}

4Here, I, —stability is defined in terms of a mapping between
variances of stochastic quantities. More details on this topic will
be provided elsewhere.

5 Although ©(:) depends on é4(7), it is always possible to find

a v(i) such that 9(i) = —éa (i), viz., v(i) = (I——A_(qu:rﬁ[éa(i)]'

Another question of interest is the following: how does
the gradient recursion (5) compare with other possible causal
recursive algorithms.? So let .4 denote any such algorithm
and assume we perform the following experiment on .A. We
initialize it with w_; = w and define the noise sequence
9(3) in terms of the resulting (successive) apriori estimation
errors as follows: (1) = —éq(1) for 0 < ¢ < N. Then it
always holds that

N N
SO < a7t w - wall + 3 L),
=0 1=0

no matter what the resulting value of wy is. Therefore,

this particular choice of initial guess (w—; = w) and noise

sequence {9{-)} will always result in a difference Ay that

is nonnegative. This implies that for any causal algorithm

it always holds that
- {An(w-1,8(:))} > 0.

For Feintuch’s recursion (5) we were able to show that
the maximum has to be exactly zero because the global
property (9) already provided us with an inequality in the
other direction. We can therefore state that among all
causal algorithms, Feintuch’s recursion (5) is one that solves
the following optimization problem:

An(wW-r, 0('))} »(19)

min max
Algorithm ({W-1,9(1)}
and that the optimal value is equal to zero.
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