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ABSTRACT

The method of Preconditioned Conjugate Gra-
dients (PCG) is introduced as an accelerator for simple
IIR algorithms to significantly increase their rate of
convergence without dramatically adding to their com-
plexity. This paper presents the IIR extension of [1],
and develops a block Newton-type adaptive IIR digital
filter with complexity O(log(IN)). The proposed algo-
rithm exploits a structured approximation to the Hes-
sian which permits the application of a fast precondi-
tioned conjugate gradient optimization method. In this
novel formulation, the identification problem of the IIR
coefficients separates into two subproblems, each of
which may be solved by application of fast adaptive
FIR techniques. Present IIR algorithms require greater
computational cost, or converge more slowly. It is the
adoption of fast PCG which permits the development of
an O(log(N)) adaptive algorithm. The PCG method
manipulates an approximation of the Hessian matrix to
form an orthogonalizing update term for the IIR LMS
algorithm. Rapid convergence follows, and the method
is robust with respect to fixed-point instability.

The use of preconditioned conjugate gradients
in the Gauss-Newton update leads naturally to the ap-
plication of the planar least squares inverse to bound
the poles of the adaptive system by projecting an unsta-
ble denominator onto a stable polynomial. This tech-
nique is invoked whenever the output of the adaptive
filter exceeds a certain threshold. This approach pro-
vides a computationally efficient means to ensure re-
bust IIR adaptive behavior.

1. INTRODUCTION

The use of an Infinite Impulse Response (IIR)
adaptive filter structure is a strategy related to block
processing which attempts to reduce the computational
burden of high-order adaptive FIR filters. The presence
of feedback generates an impulse response having large
support with significant nonzero magnitude while using
substantially fewer parameters than an equivalent FIR
adaptive filter. This "parsimony principle” has fueled
an interest in IIR adaptive filters which has yet to con-
tribute significantly in practice.

The IR adaptive filtering problem to be con-
sidered here consists of two input signals, x(n), the
input signal, and d(n), the desired or "template” signal.
The objective of the adaptive filter is to adjust the coef-
ficients of the filter, w(n), so that the error signal, e(n),
is minimized. The solution, w, for the optimal filter

weights is given by a set of normal equations,

Rw=p, (1
of common structure. The matrix, R, is the autocorrela-
tion of the regressor signal. The vector, w, contains the
coefficients of the adjustable filter, and p is the cross-
correlation between the regressor and desired signals.

The object of an adaptive filter is to search
over an error surface and locate the values of w which
yield the minimal error. The properties of the error sur-
face affect the performance of the optimization proce-
dure used by the adaptive filter. For the case of an IIR
adaptive filter, the error surface may have several mini-
mizing solutions and possibly also local minima.
About those points the surface is well approximated by
a quadratic surface [2]. This last fact suggests the use of
a Newton-type, or self-orthogonalizing algorithm,

w(n + 1) = w(n) + 2uR1 e(n)x(n), (2
to adjust the values of the IIR filter.

The primary contributor to the cost of orthogo-
nal updating is the manipulation of the autocorrelation
matrix, R. From ( 2) it can be seen that R must be up-
dated, inverted, and used to form a matrix-vector prod-
uct at each iteration. This represents computations of
O(N3), primarily due to the matrix inversion. Much of
the adaptive filtering literature represents a search for
less computationally expensive methods of forming
R(n)! x(n), the so-called “Kalman” gain, The approach
examined here is to use the iterative Preconditioned
Conjugate Gradient method (PCG) to compute the Kal-
man gain. The PCG method forms the Kalman gain by
solving the system

R(m) k(n) =x(n), (3
where k(n) is a dummy variable representing the Kal-
man gain. The application of iterative algorithms and,
in particular, the preconditioned conjugate gradient
method, in this self-orthogonalizing configuration has
been overlooked in the adaptive filtering literature.

2, FAST GAUSS-NEWTON ALGORITHMS

"Fast" self-orthogonalizing FIR adaptive algo-
rithms using PCG were developed in {1} by exploiting
several properties of circulant matrices and their rela-
tionship to Toeplitz forms. The complete quasi-Newton
algorithm consists of a series of blocks appended to
BLMS. The necessary operations for BLMS consist of
steps I, I, III, and V, shown in Figure 1. They consist
of the block computation of the adaptive filter output, y,
and then the block computation of the average gradient.
For an orthogonal algorithm, it is then necessary to
compute the autocorrelation lags, r,(n), which is step
IV in Figure 1. The operations of step VI follow by re-
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writing the correlation estimator in a recursive fashion
as a convolution. Finally, the low-computation PCG
method is used to compute the Kalman gain by solving
a "dummy" system of equations exploiting the assumed
Toeplitz structure of R.

The autocorrelation matrix, R, for an IIR adap-
tive filter is not Toeplitz. An approximate term which
provides effective orthogonalization, particularly near a
minimizing solution where the error surface may be ac-
curately modeled as quadratic, employs the Hessian, H.
This matrix has the form

H(n)=( Rxx Ryy (n))’

Rxy (-n) Ryy (n) (4
where both R,,, and R,, depend upon on the dynamics
of the adaptive filter. "'Research to fashion IIR algo-
rithms with low complexity generally approximate H,
and attempt to strike a balance between slower conver-
gence and fewer computations.

The discretization of elliptic PDEs often
results in a system of linear equations with a coefficient
matrix whose structure is identical to ( 4). These are
typically then solved by the conjugate gradient method.
To increase the rate of convergence, a preconditioner is
typically employed having the form [3]

C = MO .

: : 0Nl (5
This immediately suggests approximating H by its di-
agonal Toeplitz components,

H(n) = R 0 ,
0 Ry (6)

and then employing the PCG method rwice - once for
the subproblem with Rxx, and once using Ryy - to com-
pute the update, H(n)'V(k). The matrix, C, follows
from ( 5), and M and N are circulant approximations of
R,, and R . This update is then used in a Gauss-New-
ton algorithm, denoted FGN,
wm)=w@-)+p Ho)'VE&). (7
As in the FIR case, R,, and Ryy are Toeplitz in struc-
ture only in special casés.
3. BLOCK IIR FILTERING -
A potentially more lucrative advantage of the
IIR FGN algorithm is the ability to exploit block pro-
cessing. Block IIR adaptive filtering represents the cul-
mination of the promise of IIR adaptive filtering: sig-
nificantly large filter impulse responses computed using
convolutional operators of moderate length, and whose
performance is relatively unchanged by input correla-
tion. The block IIR filter is a straightforward generali-
zation of the block FIR filter [4], where the coefficients
are formed into infinite-dimensional matrices, and the
data occupy columns, as
Ay =Bx, (8
The input vectors are partitioned into sections of L sam-
ples, where L > { Na+ 1, Nb }. A and B are also par-
titioned into L x L submatrices. Equation ( 8) may be
written as a singly infinite problem, and following alge-
braic manipulation has the form:
y&) =Ky (k-1)+ Hox (k) + Hp x (k-1).

It can be shown that all of the matrix operators have
convolutional form. Thus a block of output, y(k), can
be computed with three FFTs, requiring the storage of
three blocks of data.

The block nature of computing the output,
y(), introduces a new clement to the IIR nature of the
filtering problem. The poles of the block IIR system
are (pi)%‘, where p, is a pole of the sequential IIR filter.
This suggests that block IIR adaptive filters may be
more unstable than sequential IIR counterparts. This
behavior is not widely observed in simulation. The av-
eraging of the descent directions in the block FGN al-
gorithm compensates for the increased instability. The
convergence behavior of block IIR algorithms degrades
analogously to block FIR algorithms: performance is
equivalent for white noise, but the step size must be re-
duced as the input becomes more correlated. This re-
sults in slowed convergence.

By resorting to a block adaptive framework it
becomes computationally feasible to project the poles
of the IIR adaptive filter (the zeros of A(z!)) within the
unit circle, as necessary. Rather than costly pole moni-
toring — which motivates the use of the parallel form
and the second-order section IIR filter structure —
bounds may be placed on the magnitude of the output
of the adaptive filter . When an element of Y(k) ex-
ceeds a threshold, it is concluded that one or more zeros
of A(z'!) exceed unity. The double planar least-squares
inverse of A(z'!) will then be used to compute Y(k), in-
stead of A(z'!) itself.

The planar LS inverse, B(z™!), of order M of an
N® degree polynomial, A(z), is determined from their
convolution A(z1)B(z1) = C(z!), which is chosen to
minimize the least squares criterion [5]

M+N
J=(1-co’+ Y o,
k=

1
The unknown parameters, b;, are determined by setting
to zero their partial derivatives with respect to J. If b,
and a, are set to unity, this generates the set of linear
equations

Q@) b Q@

QPG| @

e . .

Do) v/ \gu (9
The q, are "autocgyrelation lags” given by

= ai , k=0,...M .,

& 2:6 ik al- (10

The system matrix in ( 9) is Toeplitz, and its elements
are determined from a series of convolutions. Robinson
shows [6] that the double planar least squares inverse is
minimum phase. Thus it is sufficient o solve ( 9)
twice, using fast PCG, to restore A(z!) to a minimum
phase polynomial. Unfortunately, the projection opera-
tion performed using the double planar LS method per-
turbs even the minimum phase component of a mixed-
phase system. When employed following every block
parameter update, the effect of this projection operation
is to raise the noise floor to unacceptable levels, typical-

1385



ly less than -20 dB. This motivates the output monutor-

ing approach explored herein.
. COMPUTER SIMULATION

Computcr simulations were used to clarify the
effectiveness of the Hessian approximation ( 6) in the
Gauss-Newton algorithm ( 7). Figure 2 shows the re-
sults of a system identification experiment where the
unknown plant was a lowpass filter, having poles at z =
0.75 and z = 0.65, and one zero at z = 1.0. The input
was colored noise. The three traces compare IIR LMS
with the learning curves of ( 7) using the full Hessian,
and the approximation ( 6). The use of the approxi-
mate Hessian did not change the convergence "rate”,
but did delay the algorithms descent into the error sur-
face "bowl". This slight delay in the onset of conver-
gence makes possible a reduction in computational
complexity from O(N?) to O(Nlog(2N)). These compu-
tations in the FPCG algorithm are numerically robust,
while the O(N ) computations of the full Hessian algo-
rithm require use of the matrix inversion lemma. Use
of that technique usually requires the use of floating-
point arithmetic. Through the choice of precondition-
er, the IIR FGN algorithm also permits easier incorpo-
ration of @ priori information than the GN algorithm.
The preconditioner, k1, of [7] may be modified to incor-
porate knowledge of the location of the poles, or other a
priori information of the system structure to increase
further the convergence rate.

The performance of block IIR adaptive filters
and the use of the IIR FPCG GN algorithm were simi-
larly explored via simulation. Figure 3 plots the learn-
ing curves of block GN, block IR FGN, and IIR
BLMS. The block update scheme delays further the
onset of convergence of the Gauss-Newton algorithms
using the full and approximate Hessian, but changes lit-
tle the rates of convergence of the two algorithms

The ability of output monitoring coupled with
planar LS projection was also explored via computer
simulation. In all simulations, divergence was detected
and the adaptive system restored to0 a minimum phase
condition. The algorithm continued along a stable tra-
jectory. The results were most dramatic when the "un-
protected” IIR algorithm experienced explosive diver-
gence. In these cases, no unusual behavior was even
noted in the IIR algorithm monitoring output magnitude
and prOJecung the system poles as necessary. A stri-
king example is shown in Figure 4. Here the unknown
plant had an individual pole at z = 0.98. The IIR LMS
algorithm failed to converge, but periodic application of
planar LS prevented explosive divergence.

5. CONCLUSTIONS

The central theme of this work has been to ex-
plore a technique which reduces the dependence of sim-
ple adaptive algorithms on the correlation of the input
signal. The "fast" method of preconditioned conjugate
gradients was used to iteratively construct the Kalman
gain, introducing a family of fast Gauss-Newton algo-
rithms. These algorithms employ an iterative technique
to perform the matrix manipulation necessary for an or-
thogonal adaptive update. This results in superior com-
putational efficiency compared with those of conven-
tional fast LS algorithms. Their complexity is compa-

rable to that of block LMS algorithms, but their self-or-

thogonalizing behavior permits much more rapid con-

vergence. Furthermore, with an iterative process the
filter parameters are valid after any iteration. Thus pro-
cessing may be interrupted momentarily to dedicate the

ALU to more important tasks without serious harm to

convergence or other algorithm performance. This ap-

proach may, for example, permit architectures differing
from the typical one processor per channel configura-
tion used in array processing systems. These benefits
of iterative calculation naturally extend to two or more
dimensions. This permits the development of fast

multidimensional processing algorithms using fast 2-D

PCG based adaptive filters.

As in the FIR case, the computational reduc-
tion of the FPCG GN approach is directly connected
with its ability to replace matrix-vector operations with
convolutional operators. This exhaustive application of
convolutional structures may be contrasted with previ-
ous attempts at fast adaptive algorithms which seek
computational reduction by eliminating redundancy and
using structured, fast algorithms. By employing an iter-
ative algorithm, it is possible to exploit most fully con-
volutional structures, permitting O(log(N)) operations.
Computation is significantly reduced in applications not
requiring rapid tracking of unknown parameters and
tolerate block processing.

The iterative computation of the new algo-
rithm facilitates the easy passing information from one
block to the next. This ability to pass the previous
value of the filter parameters to the present block is of
particular interest in several applications, particularly
speech processing and disk-drive read/write channel
equalization.  Each of these scenarios is intrinsically
oriented to block processing. The passing of channel
parameters is inherently difficult in direct solution tech-
niques, frequently introducing bias. The PCG-GN al-
gorithm suffers from no such difficulties.
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