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ABSTRACT

This paper presents a statistical behavior analysis of
a sign-sign least mean square algorithm, which is ob-
tained by clipping both the reference input signal and
the estimation error, for adaptive filters with correlat-
ed Gaussian data. The study focuses on derivation of
expressions for the first and second moment behaviors
of the filter coefficient vector and analysis for the mean
square error of the filter. The previous analysis of this
type for the sign-sign algorithm is based on the as-
sumption that the input sequence to the adaptive filter
is independent, identically distributed Gaussian, but
this restriction is removed in our analysis. Theoreti-
cal expressions derived are verified numerically through
computer simulations for an example of system identi-
fication.

1. INTRODUCTION

The least mean square(LMS) adaptive filter algorithm
[1] is very popular for its simplicity, but even simpler
approaches are required for many real time applica-
tions. Replacing the input regressor vector and the es-
timation error components of the update term by their
signs reduces computing time and dynamic range re-
quirements by turning multiplications into bit shifts.
Such a variant of the LMS adaptive filter is known as
the sign-sign algorithm(SSA) which appears early in
[2] as a suggestion of the applicability for use in chan-
nel equalization. The sign-sign algorithm has seen a
resurgence of interest since its incorporation in a C-
CITT standard [3] for adaptive differential pulse code
modulation(ADPCM). There are some analysis results
on the sign-sign algorithm [4], [5], [6], [7], [8], and the
results except [6] are focused on the stability and the
persistent excitation condition for the algorithm.

In this paper we analyze the expected behavior of
the sign-sign algorithm for the finite impulse response
adaptive filters with correlated Gaussian data. This
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paper has two main results. The first is the derivation
and analysis of the dynamic equations describing the
mean and the mean square behavior of the filter co-
efficients. As the second contribution, we derive the
expressions for the mean square error of the filter and
analyze the equations. From the analysis we find the
relationship between the step size and the mean square
error, which gives us a guideline for design of adaptive
filters. The results, which are derived from the analysis,
are verified numerically through computer simulations
for an example of adaptive system identification.

Even though the expected behavior analysis of this
type has been active for the LMS [9], [10], the signed-
error algorithm {11] and the signed-regresser algorithm
[12], there is only one result [6] on the sign-sign al-
gorithm as far as we know. The analysis [6] assumed
that the reference input should be indenedent, identi-
cally distributed(i.i.d.). But the i.i.d. condition for the
input data is removed in our analysis.

2. CONVERGENCE ANALYSIS
The sign-sign LMS algorithm (2] is given by

H(n+1) = H(n)+ psgn{X(n)}sgn{e(n)}, (1)
e(n) d(n) — H(n)T X(n), 2)

where H(n) € RY is the filter coefficient vector at time
n, X(n) € RV is the regressor vector composed of the
reference input samples z(n), d(n) is the primary input
signal or the desired response of the filter, (-)7 means
the transpose of (), e(n) is the estimation error, u is
the step size, and sgn{-} means the signum function.
The desired response d(n) can be decomposed into the
information correlated with the reference input X(n)
and the uncorrelated noise as

d(n) = H3 X(n) + emin(n), ©)

where H,p: € RN is the optimal coefficient vector or
the Wiener solution, and enin(n) is the uncorrelated
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noise or the residual error of the Wiener filter. We as-
sume that emin(n) is a Gaussian noise with zero mean
and finite variance. Using (3) to (2) produces an ex-
pression for the estimation error written by

e(n) = emin(n) — V7 (n)X(n), (4)

where V(n) € R¥ is the coefficient error vector defined
by V(n) = H(n) — Hop

For the convergence analysis, we will assume that
d(n) and z(n) are jointly Gaussian, zero mean, station-
ary signals. As in many convergence analyses of this
type [9], [10], [12], [11], we will also assume that the
input pairs {X(n), d(n)} are mutually uncorrelated for
different values of n, which is known as the indepen-
dence assumption. Note that the assumption does not
restrict the nature of the autocorrelation matrix of the
input regressor vector X(n).

We can rewrite the sign-sign algorithm (1) by using
the filter coefficient error vector V(n) as follows:

V(n+1) = V(n) + psgn{X(n)}sgnle(@)}.  (5)
Expectation of both sides of (5) gives us
ElV(n+1)] = E[V(n)]
+ p Efsgn{X(n)} sgn{e(n)}], (6)
A

where E[-] is an expectation operator. Under the inde-
pendence assumption we can write A as

A = E[E[sgn{X(n)} Sgil{e(")} | V(n)]]. ()
B

The ith component of B can be evaluated based on the
Price theorem [13] as

2 .4
B; = = sin (8:), (8)
where §; is a correlation coefficient defined by

5= Ele(n—it+ De()|V(n)] _ _ rf'V(n)

0z 0e)v(n) oz ov(n)’

©)

In (5), sin~!(-) is the arcsine function, o, is a standard
deviation of z(n), o.|v(n)(n) is the standard deviation
of the estimation error conditioned by the coefficient
error vector and r; € R” is the ith column vector of the
input autocorrelation matrix R;, = E[X(n)XT(n)] €
RNXN_ The absolute value of §; is less than or equal to
1 when the estimation error has finite variance. Now
let us consider an approximation of (8) as

2 1

B,-:—-

————rTV(n
7 orouy(m) 5 V(n), (10)

where |6;] < 1 is assumed. Even though the assump-
tion is valid strictly when the algorithm converges to
the vicinity of the Wiener solution under the small step
size condition, it produces a reasonable approximation
in the transient phase. We will confirm the validity
and usefulness of the approximation indirectly through
computer simulations later. Since it is known in [11]
that an approximation, o,y (n) =~ g.(n), is valid and
useful under the small step size condition, (7) can be
expressed as

2 1
A~ —’; (T,;U—C(TI)RII E[V(Tl)] (11)
Inserting (11) into (6) produces an expression for the
mean behavior of the filter coefficient error vector as
follows:

_(7_2_#» n
EV(n+1)] = (I ) R,,) E[V(n)]. (12)

Remark 1: When the reference input is i.i.d., the
expression (12) is exactly matched with the Duttweil-
er’s result [6] given by

E[V(n+1)] = (1 ~2u

) EV(m].  (13)

o

We can also evaluate a propagation equation for

the autocorrelation matrix of V(n) by using (5) and its
transpose as follows:

K(n+1) = K(n)- % %T"(n; {Res

2
+ K(n)Rgs} + =~ 2 Pre, . (14)

K(n)

where K(n) € R¥*¥N is an autocorrelation matrix of
V(n) and P;; € R¥*¥ is a symmetric matrix com-
posed of its components

Puciy ) = sin (Reelid)y (19)
o'::
Remark 2: Under the i.i.d. input condition, Dut-

tweiler (6] derived an expression corresponding to (14)
as

_ 2 oz \° 2
K(n+1)-(1—;pm) K(n)+ 1. (16)

But (16) has a superfluous term compared with that
reduced from (14) for the i.i.d. input data. o

An orthonormal matrix @ € RV*N | composed of
the normalized orthogonal eigenvectors of R, is able
to diagonalize the matrix R, as

QTR.2Q = A = diag{)1, Az, -+, An}, (17)
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where A; is the ith eigenvalue of R;, and diag{---}
means the diagonal matrix composed of {- - -}. By using
Q, (14) can be transformed as follows:

K@®m+1) = K'(@)- % a',+(n) {aK ()

1 2 !
+K'(mA}+ 24P, (19)
T
where K (n) and P, are defined by K'(n) =
and P =qQT P,,Q, respectively.

From the definition of the estimation error (4), the
mean square error(MSE) can be expressed as

&(n) = &min + tr{K(n)Rs:}, (19)

QTK(n)Q

where &min is the minimum MSE due to the uncorre-
lated noise emin(n) and the second term is the excess
MSE which will be written by £.z(n) = tr{K(n)R..}
later. A similarity transformation by @ gives us an
expression for the excess MSE as

Eez(n) = tr{K ' (n)A} = ATE (n), (20)

where A € RN and k' (n) € ’R,N are composed of the
diagonal elements of A and K'(n), respectively.

If K'(n) converges, then so does the mean square
error since the stability of (20) is governed by the con-
vergence of E(n). It is interesting to find an expres-
sion for the steady-state mean square error. Getting a
steady-state form of (18) as n — oo and summing the
equations from 7 = 1 to N, we can get

§ex(o0) = 3 F‘ 0z 0c(0) tr{ u}' (21)

Using the relation tr{P,_} =
produces

tr{P;z} = wN/2 for (21)

€ex(00) = = p 0z 0c(c0) N. (22)

Expression (22) is a second order equation of the excess
MSE written by

Eeza:(oo) - ﬂz €cx(°°) - ,32 fm.in = 0, (23)
where 3 is defined by
B= % poz N. (24)

Therefore, the excess MSE is given by

2 1/2
Eez(°°)=ﬂ[ ﬁ+{ﬂ +fmm} ] (25)

3. COMPUTER SIMULATIONS

For verifying the expressions derived above, we will em-
ploy a system identification example. In this example
we choose the eigenvalue spread ratio of the input auto-
correlation matrix R, to be fairly large, approximately
673, so that the independence assumption is seriously
violated. We, in this tough condition, will verify the
theoretical results derived under the independence as-
sumption.

The reference input z(n) to the unknown system is
given by a fourth-order autoregressive signal,

1.79z(n — 1) — 1.9425 z(n — 2)
+1.27z(n—3)—0.52(n~4)
+((n), (26)

z(n) =

where ((n) is a zero mean white Gaussian random vari-
able with variance such that variance of z(n) is 1. The
primary input d(n) is generated from the finite impulse
response system with the reference input z(n), the co-
efficients

Hopt =[0.10.30.50.70.90.70.50.30.1]7  (27)

and an additive noise, a white Gaussian with zero mean
and variance 0.01. The adaptive filter has also the num-
ber of taps same with that of the optimal weights (27).

The simulated and theoretical results for the mean
square error are depicted on Fig. 1, where the theo-
retical curve is calculated directly from (14), (19) and
the empirical curve is Monte Carlo simulation results
which are ensemble averages of 100 independent run-
s using 10000 data samples each. We can see in Fig.
1 that the theoretical equation derived is predicting
closely the empirical behaviors even though the inde-
pendence assumption is seriously violated.

Table I shows the excess mean square error and mis-
adjustment, where the theoretical values are evaluated
by (19) and the simulated ones are the time average
from 5001th to 10000th data of the empirical curve in
Fig. 1.

TABLE I
STEADY-STATE MEAN SQUARE ERROR IN
STATIONARY ENVIRONMENTS OF IDENTIFICATION

EXAMPLE
Excess MSE  Misadjustment
£er (00) fez(oo)/fmin
Theory, eq. (25) 1.000e-3 10.00 %
Simulation 1.020e-3 10.20 %

1382



MEAN SQUARE ERROR

10t

100

101

102

102

0 TI00 2000 3000 4000 5000 6000 7000 8000 5000 10000
ITERATION

Fig. 1 Mean square error behavior of an identification

example: &min = 0.01, u = 0.001415 (for 10 % misad-

justment); solid line - theoretical results, dashed line -

Monte Carlo simulation results.

4. CONCLUSIONS

We derived and analyzed expressions describing the
mean and the mean square behaviors of the sign-sign
LMS algorithm for adaptive filters with correlated Gaus-
sian input data.

In this study we get the following expressions and
properties on the sign-sign algorithm: The mean be-
bavior of the filter coefficients is expressed as a state
equation, where the state vector is defined by the mean
of the filter coefficient error vector; For the second mo-
ment behavior of the filter coefficients, we derived a
propagation equation for the autocorrelation matrix of
the coefficient error vector; The expression for the mean
square error will give us useful guidelines for design and
analysis of adaptive filter systems.

The expressions and properties produced from the
analysis were verified numerically through computer
simulations for a system identification example, and
also the usefulness and validity of the assumptions em-
ployed for the analysis were confirmed through the sim-
ulations.
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