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ABSTRACT

This paper’ presents a study of the quantization effects
in the finite precision LMS algorithm with power-of-two
step sizes. Nonlinear recursions are derived for the mean
and second moment matrix of the weight vector about
the Wiener weight for white gaussian data models and
small algorithm step size x The solutions of these
recursions are shown to agree very closely with the
Monte Carlo simulations during all phases of the
adaptation process. A design curve is presented to
demonstrate the use of the theory to select the number of
quantizer bits and the adaptation step size u to yield
desired transient and steady-state behaviors.

1. INTRODUCTION

The least mean squares (LMS) algorithm is one of the
most popular algorithms for digital implementation of
real-time high-speed adaptive filters. Fixed-point
arithmetic is prevalent in such applications [1-3}. Many
previous publications have studied the behavior of the
finite precision LMS algorithm,

Gitlin et al. [1] were the first to address the so called
“stopping phenomenon”. They compared the digital and
analog LMS implementations for the least attainable
residual mean-square errors (MSE). Caraiscos and Liu
{2] also presented a steady-state analysis of the quantized
LMS algorithm. Their analysis used a linear model for
the correlation multiplier. This model approximates the
quantization errors by uncorrelated additive white noise
sources. Alexander [3] presented a finite precision
analysis of the LMS algorithm which included the
transient adaptation period. Here, as in [2], a linear
model has been used for the quantization operation. The
analysis in [3] was based upon an analytical model for
the difference between the finite-precision and infinite-
precision weight vectors. However, this error vector does
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not provide direct information regarding the mean-
square output error.

Although the linear model is adequate during the
early stages of adaptation, its validity lessens as the error
decreases and the algorithm converges. Quantization is a
nonlinear operation. Thus, its effects on the algorithm
behavior can be better predicted using a nonlinear model.

A recent work [8] studied the nonlinear behavior of
the quantized LMS algorithm using arbitrary step sizes.
For arbitrary 4, the implementation of the LMS updating
equation requires two quantizations [9], [12]. A different
implementation is possible when the step size is an exact
power of two. In this case, the multiplications by the step
size u are usually realized as right shifts. The error and
input signals are first multiplied in double precision. The
result is then shifted (multiplication by 4) and quantized
to single precision. The convergence is controlled by the
quantized value of the entire weight update term. This
was the problem studied in [1-3] using a linear model
and in [4] using a continuous nonlinear function.

This paper analyzes the nonlinear behavior of the
quantized LMS algorithm implementation in which
products by a power-of-two step size u are implemented
as right shifts.

1.1. Mathematical Model of Quantized LMS

The updating equation for the LMS algorithm is given
by [10], [11]
Wi {n+1)=W,(n)+ u &, (n)X(n) 1)

where

& (n)=d(n)+z(n)= X" (n) W, (n),

X(n)=[x,(n),x,(n),-, 2y (n)]17, x,(n)=x(n-i+1)
:observed data vector with length N

W, (n) :weight vector at time n (length N)

d(n)  :desired scalar signal

2(n)  :additive noise
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This paper assumes u =2, d a positive integer.
Also, it is assumed that any multiplication by u is
realized as a right shift. Under these conditions, the most
common implementation of (1) performs first the product
of the error signal by x,(n) using double precision [2].
Next, the multiplication by y is realized shifting the
result d positions to the right. Finaily, the result is
quantized to single precision and added to the current
weight vector.

The implementation of (1) described above leads to
the finite precision LMS updating equation

Wy (n+1)=Wy (n)+Que(n)x(n)] @

where Q] denotes a quantization operation and
&{n)=d(n)+z(n)- X7 (n) Wy(n), is the error signal of
the quantized algorithm. The quantization errors due to
the double precision calculations of & (n)x,(») have been
neglected in (2). The input signals are assumed to be
properly scaled to avoid overflow errors due to additions.
To render the analysis more tractable, the following
typical LMS analysis assumptions are made [5], [7]:
a) The data vector X(n) is statistically independent
over time. As a consequence, the present weight and data
vectors are statistically independent. Also, x{(n) is
assumed a stationary zero-mean independent Gaussian
sequence. Thus the data covariance matrix
Ryx = F{X(n) X7 (n)] = 021 (7= identity matrix);
b) The desired data d(n) is a stationary zero-mean
Gaussian sequence, correlated with X(#n);
¢) The noise sequence z(n) is zero-mean, Gaussian
and statistically independent of any other signal.
Using these assumptions, the analysis leads to results
that are representative of several practical applications
31, I5].

2. LMS ALGORITM WITH QUANTIZED UPDATE

A two’s complement rounding quantizer with step-
size A is assumed in the analysis (Fig. 1).

2.1. Mean Behavior

It is mathematically more convenient to investigate
the statistics of (2) about the optimum Wiener weight
vector W, =RRy, where Ry =E[d(n)X(n)] and
RH=E[X (mx” (n)]. Here, E[-] denotes statistical
expectation. Letting V{n)=W,(n)-W, and inserting
into (2) yields

Vin+l)= n)+Q[;t e(n)X(n)] 3)

Averaging both sides of (3) yields
Hy(a+1)]= E[V )
+£{o]u {d(n

For simplicity, the expectations in (4) are taken in two
steps, first on the data and then on V(n), Conditioning
(4) on ¥{n) yields

)7 () x )} )]

+E[Q[y s(

The quantization function can be expressed as

Ev(n+1)(n)

X(m)(n)] &)

© L7
dyl=y-ey)=y- Lhe" s’ ()

k=-00

where g( y) is periodic with Fourier series coefficients
A
(1 {__J P
b=/ \37) 520 @
0 k=0

Using (6) and (7) into (5), with y = ug(n)x,(n) and
V(n)=[v(n) - vy (n)], yields, for the ith row

E[v,-(n+l)|V(n)]= n)+1‘;'[ye (n)x;(m)V( n)]
—Zb {Jk ys(n)x,(an(n)} 3

Each expectation within the summation is the
characteristic function of the product &(n)x,(n),
conditioned on V(n). Conditioned on ¥(r), £(n) and
x;(n) are zero-mean, Gaussian and correlated. Thus, the
characteristic function of their product is given by [10]

2z
A k= je(n)x,(n) 2
E e{ ) () ={l-—2j(k7:;,u)pas",ax

©)
2z Y e
et o)

where p is the correlation coefficient of £ (n ) and x,(n),
conditioned on ¥'(n). The second moment o S 18

crszl,, = E[s 2(n)
where £, is the MSE using the Wiener filter. For small
4, the weight fluctuations are small and aj,,(V(n)) is

W(n]=&,+o2vVT(nW(n)  (10)
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concentrated near its mean. Thus, an accurate
approximation for the expectation over ¥’ (n) in (9) can
be obtained replacing o}, by its mean. Taking the
expected value of (10) yields

Eofy |~ )] = § o+ 0 oK (0] an
Using (6)- (10), it can be shown [9] that

0 PR B I VAl | S
E[V(n+1)]—<{1 u ,{1 2§[c(k)]”J}E[V( )]

with C(k)= 1+(2-§1,u ax’)z[i—g+ tl{KW(n)]j

x

(12)

and where KW(n)=E[V(n)VT(n)] is the correlation

matrix of the weight error vector V'(n) and trK,,,(n)] is
the trace of K, (n).This recursion describes the mean
behavior of the weight error vector.

2.2. Second Moment Behavior

Postmultiplying (3) by its transpose, taking the
expected value and determining the trace yields

t] Ky (n+1)] = tf Ky (m)] + 2]/ (n)OL 1 £ (m) X ()]

+E| Q[ ()X ()] Q[ & (m)x()]
(13)

Evaluating the expectations in (13), it can be shown
that [9]

SN

[C(k)] 3/2

+N( pol )z {1+ 4iﬂ—}} tr[KW(n)]

o, hl{c(k)
AYee (] 1
_2N(2n) ,,ZE ke {[C(k+e)]”2 [C(k—f)]m}
(14)

Equation (14) describes the time evolution of the trace of
the weight-error correlation matrix. Using (11) and (14),
the MSE performance can be recursively determined.

3. SIMULATION EXAMPLES

Fig. 2 depicts a simple system identification problem.
W" is the weight vector to be identified. The components
of W" are the values of 31 equally spaced samples of a
time-delayed raised-cosine function. Fig. 3 displays
Monte Carlo simulations (100 runs) of tr[K(n)] for

N=31,02=1/9, u =27, £,=E[z%n)]=10" and

several values of A =27 The theoretical curves were
determined using (14). The theoretical predictions and
the simulation results are in excellent agreement. Fig. 4
presents the time evolution of the MSE for the same
parameters. Clearly, the analytical results can be used to
predict the bebavior of the quantized LMS algorithm (2).
Fig. 5 displays the MSE after 5000 iterations for o’ =1,

£o=0.=10", N=31 and several values of A =27

andy =277 The dots (s) were obtained from the

theoretical recursions. The lines (—) were drawn by
cubic spline interpolation for easier visualization.

4. CONCLUSIONS

This paper presented a study of the quantization
effects in the finite precision LMS algorithm with
power-of-two step sizes. Deterministic nonlinear
recursions were derived for the mean and second
moment matrix of the weight vector about the Wiener
weight for white gaussian data models and small
algorithm step size x. The numerical solutions of these
recursions were shown to agree very closely with the
Monte Carlo simulations. A design curve has been
presented to demonstrate how the theory can be used to
select the number of bits and the step size 4 to yield a
desired algorithm performance.
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mean-square error (MSE)
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Fig. 2- System identification model

1.006+0

1.00E-1

1.006-2

1.00E-3

1.00E-4

1.00E-5

1.00E-6

1.006-7

I ! | T I ' 1 T
0 1000 2000 3000 4000 5000
iterations

Fig, 3. Simulations (e) versus theory (=) for the time
evolution of tr[K;,, (n)]. Simulations using updating

equation (2) and A =27 in Fig, 1.
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