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ABSTRACT

We address the problem of linear mean-square esti-
mation with arbitrary convex constraints for depen-
dent processes. Two algorithms are proposed and their
convergence is established. The first algorithm, which
is deterministic, covers the case of known correlation
structures; the second, which is stochastic and adap-
tive, covers the case of unknown correlation struc-
tures. Since existing algorithms can handle at most
one simple constraint this contribution is relevant to
signal processing problems in which arbitrary convex
inequality constraints are present.

INTRODUCTION

The solution to the unconstrained linear mean-square
(LMS) estimation or filtering problem is well known
if the joint statistics of the observed and estimated
processes are known up to the second order. In many
instances these statistics are unknown and an adaptive
estimation procedure is employed to approximately
optimize performance with incoming data. Adaptive
estimation methods based on steepest descent tech-
niques have been applied to a wide range of signal pro-
cessing problems [1]. One of the most widely used algo-
rithm is the “Widrow LMS” algorithm which employs
the gradient method to find the direction of steepest
descent and, at each iteration, replaces the true gra-
dient by its instantaneous estimate [11]. The main
advantages of the LMS algorithm are its simplicity
and the relative low complexity of its implementation.
In this unconstrained environment, the convergence of
the coefficients of the filter has been analyzed under
various statistical assumptions on the underlying pro-
cesses. Thus, independent processes were considered
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in [11] and M-dependent processes in [5, 7]; gaussian
processes were discussed in (3] and spherically invari-
ant processes in [10].

In practical situations, a priori constraints on the op-
timal filter are often available and they confine it to
some feasibility set. The use of the standard LMS
algorithm is no longer appropriate and an adaptive
constrained optimization procedure is required. In an-
tenna array processing, the LMS algorithm has been
studied with a linear [4] and a quadratic [8] equality
constraint. In [6], two constraint sets were treated
separately: a hypercube and a hypersphere. In the
context of image processing, an adaptive algorithm
was developed in [12] for the estimation of stack filters
with a hypercube constraint. For constant step-sizes,
the performance of the stochastic algorithm were stud-
ied in [6] in the cases when the input processes are
strongly mixing or asymptotically uncorrelated. For
decreasing step-sizes, the convergence of the filter co-
efficients estimates was investigated in [12] under the
same statistical assumptions as in [6].

In this paper, we present a constrained LMS algorithm
based on the standard gradient projection principle
in which each iterate is projected onto the feasibil-
ity set to form the update. Assuming that the joint
probabilistic attributes of the observed and estimated
processes are known up to the second order, we shall
obtain a deterministic algorithm that will be shown to
converge to the optimal constrained solution. We shall
then derive an adaptive constrained LMS algorithm
and study its convergence when the input processes
are either strongly mixing or asymptotically uncorre-
lated, and when the step-sizes are either constant or
vanishing. In the following developments, the only re-
striction on the feasibility set is that it be compact
and convex. Therefore our results generalize those of
the studies mentioned above. The case of multiple
convex inequality constraints yielding a bounded fea-
sibility set is also covered by our theoretical analysis.
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NOTATIONS AND ASSUMPTIONS

Let (X&)rez and (Y3 )xez be second-order Jjointly sta-
tionary real random processes on a probability space
(92, F, P). We consider the problem of determining the
optimal N-tap linear filter w* to estimate the pro-
cess (Yi)uez in terms of the observations of the vector
process (X y)iez = ([Xk, -, Xu-nN+1]*)rez subject to
convex constraints on the filter coefficients vector w .
The feasibility set associated with the constraints in
RY is denoted by S and is supposed to be nonempty,
closed, and convex. For p €]0, 400 and u € RY, we
define Qully = [TV |u, |P)1/7 (-, is the standard
euclidean norm and will be denoted by || - ||). We use
the notations R = EX ;X ¢ and r = EYpX ,; in addi-
tion, the eigenvalues of Rare 0 < A; < -+ < Ay.

DETERMINISTIC ALGORITHM

It is assumed that the correlations R and r are known.
In the absence of constraints, the optimal filter is given
by

u*=Rr. 1)

Now let 1
©(x) = Ju'Ru —u'r. (2)

The constrained mean-square estimation problem can
be stated as

. ot 2 -
g EYo — 0 X,[" = min O(w). (3)

Since R is positive definite and S is closed and con-
vex, there exists a unique solution w® to the prob-
lem (3). The following proposition characterizes w*
and provides an iterative method to compute it. Pg
henceforth designates the operator of projection onto
S, that is

(Vw €RY) ||Ps(w) - w|| = min o —w. (4)
Proposition 1. [2] Let 0 < £ < 1. There is a unique
solution to (3) characterized by

(Y €10, +0o[) w* = Ps((I — pR)w"* +pur). (5)

In addition, for every w, € RY and every (ua)r>o C
[e,2/AN — €], the iterative process

(VEEN) w, ;= Ps((I — paR)w, +par)  (6)

converges to w* at a geometric rate. |

In order to obtain an alternative description of the
solution to (3), let us equip RY with the hilbertian
norm

lzllr= [%Q‘Ry}l/z- (7)

The following proposition states that the optimal con-
strained filter is simply the projection of the optimal
unconstrained filter onto the feasibility set, relative to
the metric of (7).

Proposition 2. [2] w* = PR(u*). a
STOCHASTIC ALGORITHM

When the correlations are unknown, an adaptive pro-
cedure is required. To this end, let us define instanta-
neous cost functions (O )xe¢z by

V(k,u) €ZxRY) O4(u) = Zu'X X u-u'ViX,.
k k k

(8)
In the unconstrained case, the operation of the adap-
tive LMS algorithm is based on iterating once the gra-
dient method applied to (8). In the constrained case,
we adopt the algorithm (w o €RY, k€N, p €10, +00[)

SR

Wiy = Ps(wy, — paVOi(w,))
= Ps((I-mX X w, +mYaX,). (9)

In the following, we analyze the convergence of this
algorithm when S is bounded and the input processes
are either jointly a-mixing or p-mixing. For a constant
step-size y, we give an asymptotic bound on the mean-
square deviation of the filter coefficients from their op-
timal value (Propositions 3) and an asymptotic bound
on the additional mean-square signal estimation error
(Proposition 4). For vanishing step-sizes (kx)r>0, we
show that the algorithm (9) converges almost surely
and in L? (Proposition 5).

Let 77* denote the sub o-algebra of F generated by
the random variables (Xk, Ya)ick<n and let L2(FP)
denote the space of all second-order F*-measurable
random variables. We now introduce two notions of
asymptotic independence [9)].

Definition 1. Let (Xj)rez and (Yi)rez be jointly
stationary processes and define for every i € I

[PANB —PAPB|.  (10)

a; = sup
(4,B)eF’ _xF}=

Then (Xi)rez and (Yi)rez are jointly a-mixing if the
sequence (a;)i>o converges to zero.
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Definition 2. Let (Xi)xez and (Yi)rez be jointly
stationary processes and define for every i € N

leov(U, V)|

p= e (varUvarV)1/2’ (1)

(UV)eLHFL )X LA F ™)
Then (Xi)aez and (Y )rez are jointly p-mixing if the
sequence (p;)i>o converges to zero.
The asymptotic bounds on the mean-square deviation
and the additional mean-square error, as well as the
almost sure and LP convergence for jointly a-mixing
(respectively p-mixing) processes are established under
the following Assumption 1 (respectively Assumption
2).
Assumption 1. (Xi)iez and (Yi)rez are jointly a-
mixing with mixing sequence (a;)i>o satisfying:

() 2o af/(2+6) < +oo;
(i) E|X1Ya|>* < 400, 1< k] < N;
(i) E|X1Xw+1|2® < +oo, 0< k| < N;

for some 6§ > 0.
Assumption 2. (Xi)xez and (Yi)rez are jointly p-
mixing with maximal correlation sequence (p;)i>o0 sat-
isfying:
() Xipopi < +oo;

() E|X:1Yal® < +00,1< |k| < N;

(ﬁi) EIX1X].+1|2 < 400,0 < |k| <N.
Let us remark that, since

(VieN*) a; < pi/4, (12)

it is clear that p-mixing processes are also a-mixing.
Thus the results obtained for a-mixing processes under
Assumption 1 hold also for p-mixing processes as long
as the sequence (pf/ (2+6))i20 is summable. In Assump-
tion 2, the more stringent condition of summability is
imposed on the sequence (p;)i>o, but the conditions of
existence of moments are weaker than those stated in
Assumption 1.

Proposition 3. [2] Take any compact convex set S.
Then if either Assumption 1 or Assumption 2 holds,
any sequence (wx)x>o0 generated by (9) with constant
relaxations

(Vk €N) pr = 1 €10, min{2/An,1/(2A1)} (13)
satisfies

limsup Efjw, — w*||? < pKo, (14)
k—+o00

where w* is the solution to (3) and K¢ a constant
independent from u. ]

Proposition 4. [2] Take any compact convex set S
and let
€ =E|Yo—w'TX,? (15)

be the minimum attainable mean-square error. Then
if either Assumption 1 or Assumption 2 holds, any
sequence (wg)r>o generated by (9) with relaxations as
in (13) satisfies

(VEEN) ElYi—wi X, =¢"+ea, (16)

where
limsup e < pK;i, (17)
k—+00

where K is a constant independent from pu. O

Propositions 3 and 4 generalize the results of [6] in
two respects. First of all, S is no longer restricted to
be either a hypercube or a hypersphere. Secondly, the
relaxation parameter px is no longer confined to the
interval 0, min{2/(A; + An),1/(2A1)}[. Our next re-
sult pertains to convergence in the case of nonconstant
relaxations.

Proposition 5. [2] Take any compact convex set S
and any sequence (px)r>0 C 0, +0o[ such that

(i) Ekzol"k = ~o00;
(i) Casoki < +oo.

Then, if either Assumption 1 or Assumption 2 holds,
any sequence (wx)x>o generated by (9) satisfies

im w, =w"* P-almost surely (18)
k— 400

and

(Vp€l0,4+00[) lLm ERw,-w* =0, (19)
k—+oco
where w* is the solution to (3). a

THE CASE OF MULTIPLE
CONVEX CONSTRAINTS

Strictly speaking, the above results apply only to prob-
lems with one arbitrary convex inequality constraint.
However, they can be extended to problems with m
compatible convex inequality constraints in a trivial
way by simply letting the feasibility set take the form

S = ﬁ S;, (20)

i=1
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where S; is the closed and convex set associated with
the Zth constraint.

This conceptually simple approach may however face
serious obstacles in actual applications due to the fact
that the operator Pgs of projection onto S in (20) is
often not known explicitly. In fact, projecting omnto
an intersection of arbitrary closed and convex sets has
until recently remained an open problem in mathemat-
ical programming. The key to solving this problem is
to proceed via decomposition by observing that, while
Ps may be untractable, the operators (Pi)igi<m of
projection onto the individual sets (Si)1<i<m are typi-
cally easy to evaluate. Thus, the projection of a vector
w onto the feasibility set S of (20) can be obtained by
the algorithm [2]

1

V. n+1: 0
(VneN) w oTe

i ZP.-(Q“),

m(n +1) <
(21)

where w® = w. It is important to note that in this
algorithm the m individual projections are averaged
at each iteration. They can therefore be computed
simultaneously on parallel processors, which makes the
cost of the method independent from the number of
constraints.

0

Algorithm (21) can now be combined with the previous
ones. Thus, in the case of algorithm (9), we arrive at
the following adaptive procedure.

Fix wy,eRY
fork=0,1,.--
Fix px €]0, 400
w=(I - X, X{w, +m¥iX,

forn=0,1,.--
n+l . 1 0 n m 3 n
I_ e = n+1'—”-lc+m(n.+1) iy Pi(w})
]
Wiir =Wy

(22)
The choice of the relaxation parameters (x)r>0 can
be made as in Propositions 3 and 5. Of course, the
theoretically infinite inner iterations on n will be trun-
cated in practice, thereby resulting in an approximate
projection onto S. We are currently investigating the
effects of these approximate projections on the conver-
gence results presented in this paper. In particular, the
case when only a few iterations on n are performed is
especially important for on-line applications in which
the time allocated for each iteration on k is typically
short.

[1]

(2]

(3]

[4]

(11]

1375

REFERENCES

M. G. Bellanger, Adaptive Digital Filters and Sig-
nal Analysis. New York: Marcel Dekker, 1987.

P. L. Combettes and P. Bondon, “Con-
strained Adaptive Filtering for Dependent Pro-
cesses.” Technical report, EE Dept./CUNY and
LSS/CNRS, October 1994.

A. Feuer and E. Weinstein, “Convergence analysis
of LMS filters with uncorrelated gaussian data,”
IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, vol. 33, no. 1, pp. 222-230, Febru-
ary 1985.

O. L. Frost, III, “An Algorithm for linearly con-
strained adaptive array processing,” Proceedings
of the IEEE, vol. 60, pp. 926-935, Aungust 1972.

J. K. Kim and L. D. Davisson, “Adaptive lin-
ear estimation for stationary M-dependent pro-
cesses,” IEEE Transactions on Information The-
ory, vol. 21, pp. 23-31, January 1975.

A. Krieger and E. Masry, “Constrained adap-
tive filtering algorithms: Asymptotic convergence
properties for dependent data,” JEEE Transac-
tions on Information Theory, vol. 35, no. 6, pp.
1166-1176, November 1989.

O. Macchi and E. Eweda, “Second-order conver-
gence analysis of stochastic adaptive linear filter-
ing,” IEEE Transactions on Automatic Control,
vol. 28, no. 1, pp. 76-85, January 1983.

R. A. Monzingo and T. W. Miller, Introduction
to Adaptive Arrays. New-York: Wiley, 1980.

M. Rosenblatt, Stationary Sequences and Ran-
dom Fields. Boston, MA: Birkhauser, 1985.

M. Rupp, “The behavior of LMS and NLMS al-
gorithms in the presence of spherically invariant
processes,” IEEE Transactions on Signal Process-
ing, vol. 41, no. 3, pp. 1149-1160, March 1993.

B. Widrow, “Adaptive filters,” in Aspects of Net-
work and Systems, R. E. Kalman and N. Declaris,
Eds. New York: Holt, Rinehart, and Winston,
1971.

L. Yin, J. T. Astola, and Y. A. Neuvo, “Adap-
tive stack filtering with application to image pro-
cessing,” IEEE Transactions on Signal Process-
ing, vol. 41, no. 1, pp. 162-184, January 1993.



