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ABSTRACT

We present a novel nonlinear filtering approach for de-
tecting weak signals in heavy noise from short data records.
Such detection problems arise in many applications includ-
ing communications, radar, sonar, medical imaging, seis-
mology, industrial measurements, etc. The performance of
a matched filter detector of a weak signal in heavy noise is
directly proportional to the observation time. We discuss an
alternative detection approach that relies on a nonlinear fil-
tering of the input signal using a bistable system. We show
that by adaptively selecting the parameters of the system,
it is possible to increase the ratio of the square of the am-
plitude of a sinusoid to that of the noise intensity around
the frequency of the sinusoid (stochastic resonance). The
sinusoid can then be reliably detected at the output of the
nonlinear system using a suitable matched filter even when
the data record is short.

1. STOCHASTIC RESONANCE

Stochastic Resonance (SR) is a feature of stochastic relax-
ation in modulated bistable systems. When the input to
such systems is a sinusoidal signal plus an additive observa-
tion noise, the noise and signal interact to produce a sharp
peak in the power spectrum of the system output at the
frequency of the input sinusoid. SR was first introduced by
Benzi et al. [1] and has.been experimentally observed in
various bistable systems of practical importance [2,3,4,5].
The nonlinear system which has been extensively ex-

ploited in the study of SR is defined by the nonlinear Langevin

equation for one variable[6] as:

z(t)= az(t) — bz (t) + csin(Q) + £(2) 1)

where a,b are real parameters, ¢ is the signal amplitude
and Q is the modulation frequency. Here, we assume that
the noise £(t) is zero mean, Gaussian and white, with an
autocorrelation function given by E[¢(t)é(t+71)] = 2D6(t—
7).

The system in (1) is the simplest bistable (double-well)
system which describes an overdamped Brownian motion in
a bistable potential U(z) = —az?/2 4 bz*/4. The barrier
height of the bistable potential in the absence of modulation
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and noise (¢ = 0, D = 0) is AU = a*/4b and the potential
minima are located at z, = £+/a/b. With ¢ > 0, each po-
tential minimum is alternately raised and lowered relative
to the barrier height. Bistability is lost for ¢ > (4a%/27b)'/2.
Therefore, in the absence of an input (¢ = 0,D = 0) the
state of the system is confined to one of the two wells de-
pending on the initial condition. When ¢ > 0, the sinusoid
induces a periodic variation in the location of the potential
minima at its frequency. In this case, the response of the
system is of the form, z,(t) = esin(Q + @) + zr(t), where
zr(t) represents higher harmonics. The parameters ¢ and
¢ are normally small compared to a,b and c.

On the other hand, when the noise term £(t) is present,
noise-driven switching occurs at some rate. The increase
in the noise intensity, D, increases the switching rate. The
switching rate in the absence of the modulation (¢ = 0) is
given by the well known Kramers formula[6]:

R=—2=expl-230) @)

Transition between wells are therefore more likely when the
barrier height is minimum. Since, the sinuscidal signal in-
duces a periodic variation in the location of the potential
minima at its frequency, it effectively clocks the noise in-
duced transitions. In particular, we will observe a strong
sinusoidal component at frequency € in z(t) when the noise
itself produces on average two transitions per 27/ seconds.
This provides a simple explanation of SR valid for small
driving frequencies 2.

2. DISCRETE TIME ADAPTIVE STOCHASTIC
RESONATORS FOR SIGNAL DETECTION

The performance of a matched filter detector of the sig-
nal Asin(§2t) observed in the presence of a Gaussian white
noise of intensity o over an interval of length T seconds is
directly proportional to the quantity A2T/20¢°. Therefore,
detection performance is poor when T is short and the ratio
(A/)? is small. To detect weak signals (characterized by a
small (A/0)? ratio) from a short data record, we propose to
use an adaptive stochastic resonator . Specifically, we pass
the noisy observation through the nonlinear bistable filter
described by (1). When the parameters of the filter are
properly adjusted as we explain below, the output of the
filter will have sinusoidal components at frequency © and
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its odd maultiples. In particular, if we denote by A, the am-
plitude of the sinusoid at frequency Q at the output of the
filter and by o7,. the average intensity of the (1/f) noisein a
small band of width proportional to 1/T around frequency
Q, we find that the local signal-to-noise-ratio (LSNR)
(Ao/d10c)? is much higher than the input ratio (A/c)?
. Therefore, the performance of a detector that uses the
output of the bistable filter can be drastically better than
that of a detector that uses the noisy observation directly.

2.1. Adaptive selection of the parameters of the
stochastic resonator

We begin by explaining how we can select the parameters
a and b of (1) for maximum enhancement of the input si-
nusoid.

Observe that we can normalize (1) by making the change

of variables z(t) — z(t)\/b/a,t — atand ¢ — ¢ /b/a3, D —
Db/a®,Q — Q/a. The normalized eq(1) becomes:

z(t)= z(t) - z°(t) + csin(Qt) + £(2). (3)

The potential minima in scaled units are now located at
To = 21 and the barrier height AU = 1/4. We studied (3)
to determine the frequency at which we observe maximum
signal enhancement as a function of input noise intensity
(SR). We can plot the ratio of the LSNR at the output of
the stochastic resonator to that at its input as a function
of noise intensity and frequency €. These plots show broad
maxima for small values of 2 and intermediate value of
noise intensities. The curves drop away from their maxima
(cf. [3] and [7] where results corresponding to a particular
case of (1) are reported) .

Given this information and a noisy observation of a sinu-
soid we proceed as follows. We pass an oversampled version
of the signal through a tree structured filter bank (Fig. 1).
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Figure 1: Tree structured stochastic resonator filter bank.

The output of each bank is decimated such that it re-
mains oversampled. In our experiments, we have found that
the signal needs to be oversampled at least by a factor of
50 for our technique to work. However, we do not yet have

a complete theoretical understanding of the effect of over-
sampling on our detection scheme.

Next, we compute a crude estimate of the noise inten-
sity by measuring the variance of the filter bank outputs
in those bands that do not contain signal energy. Finally,
we pass the filter bank output that corresponds to the fre-
quency band that contains the sinusoid through a discrete
version of (1) (see below) with parameters a and b adjusted
for maximum signal enhancement. The selection of a and
b can be done from the coarse knowledge of the noise in-
tensity, the frequency band, plots of output to input SNR
corresponding to (3) and the information shown in Figs. 2
and 3. For each input SNR, one must select parameters a
and b within particular intervals to achieve maximum en-
hancement of the LSNR. The vertical bars in the two figures
denote these optimal intervals as a function of input SNR.
The data shown in these two figures was determined exper-
imentally.
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Figure 2: Optimal selection of parameter ¢ in (3) as a func
tion of input SNR.

2.2. Discrete time implementation

Our discrete stochastic resonator corresponds to a fourth
order Runge-Kutta discretization of (1). Specifically, if we
denote by zn and u, the nth samples of z(t) and the input
u(t) = csin(Qt) + £(t), our discrete system is described by

ki k2 ki ks
zn+l—-$n+'6-+?+3 —é- (4)

where k1, k2, k3 and k4 are given by

k1 = h[azn — bzd + un]

k2 = hla(zn + 5) = b(zn + 5)° + unp1) (5)
ks = hla(zn + 22) = b(zn + £2)° + un4i)

ks = hla(zn + k3) — b(zn + k3)* + uny2).

We set h to be 1/100 of the period of the maximum fre-
quency sinusoid in the band that we consider.
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Figure 3: Optimal selection of parameter bin (3) as a func-
tion of input SNR.
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Figure 4: A cascade of two SR devices

3. CASCADED STOCHASTIC RESONATORS

It turns out that it is possible in certain cases to further
increase the LSNR by using a cascade of SR devices. In
Fig. 4, we consider two such devices connected in series.
The two discrete time stochastic resonators SR1 and SR2
in Fig. 4 realize the following system of equations:

x,.:alz,.—blzi-i-un (6)
Yn = G2yn — b2yi + Kzn.

The factor k is varied achieve maximum LSNR at the out-
put of SR2.

We have observed that there is an increase in the LSNR
at the output of the second SR device as compared to its in-
put. At the same time we have also observed an increase in
the background noise level. We believe therefore that there
must be a limit to the amount of LSNR enhancement that
one can achieve by cascades of more than two SR devices.

4. EXPERIMENTAL RESULTS

Experimental results of our simulations for the discrete ver-
sion of SR described in section 2 are presented in Figures
5, 6 and 7. Fig. 8 shows the results corresponding to two
cascaded SR devices.

For Fig. 5 and 6 we used a = 1.0,b = 1.0,c = 0.8 and
Q = 1.0. The noise levels were D = 0.245 and D = 8.0
in Fig. 5 and 6 respectively The power spectrum of the
output time series was calculated using a FFT. The power
spectral density (PSD) was averaged over a very large num-
ber of points (2° segments of 2'* points each). The PSD

displayed a series of peaks at odd integer multiples of the
modulation frequency. The first peak located at the modu-
lation frequency, however, was the largest. The noise level
at the modulation frequency was measured by averaging the
values for four points to the left of the signal peak and four
points to the right. A strong signal peak appearsin the out-
put PSD plots of Figs. 5 and 6 at the modulation frequency.
Fig. 6 further shows how the output signal power as well as
the LSNR at the modulation frequency are increased with
the increase of input noise level. A LSNR increase in the
output of a bistable system corresponding to the increase
in the input noise level is the prescribing feature of SR.

Fig.7 compares the probability of detection of a sinu-
soid in white Gaussian noise as a function of input SNR,
for the proposed SR approach and classical matched fil-
tering approach that uses the observed signal directly. In
the proposed approach, a matched filter detector operates
at the output of the SR system. The values of a and b
are changed adaptively as a function of the estimated noise
intensity using the curves shown in Figs. 2 and 3. The
frequency Q of the input signal was 2 and was assumed to
be known. The curves shown are the result of 20 averages
at each SNR value.

Finally, Figs. 8.a and 8.b show the output of the first
and second SR device respectively for the case where pa-
rameters ¢ and 0 were fixed at 0.8 and 1.0, while a1, b
and a3, b, were changed adaptively. It is obvious that the
second SR device further improves the LSNR.
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Figure 5: PSD of the output of a SR device with
a = 1.0,b = 1.0,c = 0.8, @ = 1.0 and a noise level
D =0.245

5. CONCLUSION

In this paper, we studied the problem of detecting a weak
signal in the presence of heavy noise from a short data
record. We proposed to use an adaptive stochastic res-
onator to enhance the signal prior to detection. In particu-
lar, we showed that the signal-to-noise ratio at the output
of a nonlinear bistable filter can be much higher thar that
at its input when the parameters of the filter are properly
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PSD of the output of a SR device with
a=10,b=1.0,c=0.8, 2= 1.0 and a noise level D = 8.0
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Figure 8: PSDs of the outputs of a cascade of two SR de-
vices.

selected. Although we have concentrated on the detection
of sinusoidal signals of known or unknown frequencies in
white noise, our approach works equally well with other
types of signals, e.g., chirp, PAM, FSK and PWM signals.
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