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ABSTRACT

We present a solution for the construction of orthogonal time-
varying filter banks without transient filters. To reach this result
the idea is the following: all the various filter banks used in the
time-varying decomposition are not arbitrary, but are linked
together and in fact are derived from an unique initial orthogonal
filter bank. With this new technique, the PR property is always
guaranteed even if we switch abruptly from one filter bank to an
other without the use of transient filters.

We will explain, by taking an initial M-band orthogonal filter
bank which performs a regular M-band frequency splitting, how
to derive various mutually orthogonal filter banks with almost any
arbitrary time/frequency resolution, even able to perform irregular
frequency splitting like for example in a wavelet decomposition.

I. INTRODUCTION

Perfect Reconstruction subband transforms and more
particularly orthogonal filter banks are used as general tools for
many applications like coding of speech, audio and video,
enabling HDTV/TV compatibility, image format conversion,
performing adaptive filtering...

The various families. of orthogonal transforms are now rather
well studied and understood. In particular the cases of orthogonal
2-band filter banks linked with orthogonal wavelets and wavelets
packets and the case of modulated M-band Orthogonal
Transforms are widely used and described [1,2,3,4,5,6,7]. For
example in [6] all the well known 2-band orthogonal solutions
and M-band modulated solutions are merged into an unique
formalism and theory, the Modulated Orthogonal Transforms.

A lot of research has been done to find the “optimum” filter
bank, the “optimum” decomposition. But more and more it is
thought that these optima are signal dependant. For example in the
image coding field, we can try for each image to select the best
wavelet packet decomposition according to an energy criterion or
any other criterion. Nevertheless the content of one image is
highly variable and the statistics of one part of an image can be
very different to the statistics of another part of the same image.
To match these changes in the image content, we can think about
using time-varying filter banks. This means that in the analysis
part there are some commutations and that various filter banks
with different characteristics are used. But most of the time-
varying filter banks approaches suffer from some defects: Even if
each filter bank itself is orthogonal and then has the Perfect
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Reconstruction property, if we switch from one orthogonal filter
bank to another in the analysis process and identically in the
synthesis process, generally the Perfect Reconstruction property
is lost. To recover the PR property one solution is to apply
transient filters at the analysis or the synthesis stage to overcome
the problem occurring in the transition area [7,8]. In that case the
frequency characteristics of these transient filters can not really be
controlled.

In this paper we propose a different way of performing
orthogonal time-varying filter banks without transient filters,
while maintaining by construction the PR property. Primarily the
idea behind this paper is derived from {5,6].

II. THE TECHNIQUE

The idea to obtain the result is: All the various filter banks
used in the time-varying decomposition are not arbitrary, but are
linked together and in fact are derived from an unique initial
orthogonal filter bank. For example by taking an initial M-band
orthogonal filter bank which performs a regular M-band
frequency splitting, we can derive various orthogonal filter banks
but with almost arbitrary time/frequency resolution, as for
example the irregular frequency splitting of a wavelet
decomposition.

To understand the process, we have to make clearly the
difference between the orthogonality property (which induces the
PR property) of the filter bank, what we call M, i.e. the number
M of channels and the time/frequency resolution of the filter bank.
For example we can have a 8-band filter bank but with the
time/frequency resolution of a classical 4 band filter bank as
shown in a trivial example in Fig 1.

Fig 1: The same time/frequency decomposition but
seen as a 4-band filter bank on the left side
and a 8-band filter bank on the right side
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I1.1 First approach

To explain briefly how to reach the result we will take the
formalism of orthonormal basis rather than the classical signal
processing approach with z-transform. (Remark. Normally there
is a difference between the scalar product and the convolution
product, nevertheless for simplicity reasons we do not make here
this difference).

For a M-band normalised orthogonal filter bank, the M
analysis filters h, (n) have to verify:

Vk,1€[0,M-1), Vm,peZ,(hy (n),hy (n) ) = 8 1.8, ,

<.,.> means the scalar product, §,=1 if i=0 and O either, and
we deﬁne hk (n)=hk(n pM).

This means that the filters and their shifted versions by a
multiple of M are orthogonal each other. We can say that the
filters by (n)=h,(n-pM) form an orthonormal basis, and that in
fact the K'l band filter bank performs an orthonormal basis
change, a change of “coordinates”.

In general we suppose that the initial filters hy(n) split
regularly the frequency plane in M-bands and a lot of solutions
exist to do so [1,2,3,4,5,6]. (see Fig 3a)

Now let us take Up, an arbitrary unitary transform of size M,
and let define Hp(n) and Gp(n) by:

t
[H,,(n) = [hg p(m), by H(0), ooy By g o (M)] ]

le(n) =Up.Hy(n) = [go,p(“)’ 81,p(Mseees gM-l,p(“)]‘ I

Hp(n) are the set of analysis filters normally applied at
position p. Gp(n) will be an alternate set of filters to apply at
position p. Because Uj, is unitary, we can easily verify that:

|< gk,p(n)’ hl,m(") ) =0, if p£m |

’( gk’p(n), gl,p(n) )= Sk

This means that if at position p, the filters hk,p(n) are replaced
by g, ,(n) we still have a valid orthonormal basis change, and we
still tgen have the Perfect Reconstruction property if at the
synthesis process we perform the same change of filters at the
same position. What was done only at one position p can be done
for each position p by applying at each position p an unitary
transform U,

With this idea if we apply the same unitary transform U at all
positions p, we built a complete new orthogonal filter bank
g, (n) starting from hk (n), and by doing so I will show in
chapter I11. that the 8kp (n) filter bank can simulate a lot of various
time/frequency decomposrtlons as for example wavelet packets.

To go further, by taking any arbitrary unitary transforms U
of size M with peZ, the fiiters G (n) defined by G (n) =

(n) [go (n), g p(n), o EM-1p (n)] will generate a valid
orthonormal basrs change. This means that the unitary transform
U can change from one position p to an other.

We obtain then a time-varying filter bank by taking different
unitary transforms according to positions p. This time-varying
filter bank does not need transient filters and the PR property is
always verified by construction.

11.2 Simple implementation

This process is rather simple to realise. First perform the
fixed original hk (n) filter bank to obtain the transformed
coefficients Xk(p)=<x(n) hk (n)>.

Now if you wanted in fact to apply at position p the filters

p(n) = U H (n) [g0 (n), g, p(n), “ 8M-1,p (n)]' instead of
the initial ﬁlters hy p(n) to obtain the transformed coefficients
Y\ (p)=<x(n),gx p(n)>, the only thing to do is to apply the unitary
transform Up in the subband domain on values X, (p).

lj‘((p) = [X4(n), X, (), ... Xpg . (W]

]Y(p) = Up.X(p) = [Yy(n), Y (n), .Yy (m]*

This can then be seen as a reversible post-processing to be
done in the subband domain.

I1.3 Generalisation of the technique

In this example the unitary transform U, is applied on
subband coefficients X, (p), ie at the same spatial location, but
this technique and the orthogonality of the resulting filters is also
valid if an unitary transform of any arbitrary size N (not related to
M) is applied to an arbitrary set of N filters from the possible
hk'p(n) initial set. We can even apply different unitary transforms
of different sizes on different initial sets, the orthogonality of the
resulting filters is always guaranteed.

Furthermore we derived our explanation by taking as initial
filter bank an orthogonal M-band solution with the same sub-
sampling factor M for each filter hy(n). Nevertheless this
techniques is also valid if the initial orthogonal filter bank hy (n) is
for example a wavelet decomposition or a packet wavelet
decomposition. In that case the sub-sampling factor My can be
different for each filter hy(n), and the shifted versions of hy(n) are
then hy p(n)-==hk(n PMy).

Up to now, the explanation was performed on 1D filter
banks, but obviously this can be generalised to multi-
dimensionnal filter banks, and for example to 2D filter banks for
image coding applications.

III. APPLICATIONS

I11.1 Usefulness and practical use

Now we know the technique to modify an initial filter bank
k.p(N) to generate various &, (n) filters. Then we now how to
ﬁd this kind of time-varying filters banks without the need of
transient filters. But are we sure that we can simulate then almost
any time/frequency resolution? Is this possibility useful?

The answer is yes, and generally we do not even have to
choose complicated unitary transforms to do so. In a first
approximation simple additions and subtractions (a simple
butterfly) can most of the time be sufficient!

For example with M=8, a Perfect Reconstruction Cosine
Modulated Filter bank solution with filter length 15 [4,5] gives
filters hy(n). We can derive a 8-band filter bank with the
time/frequency resolution of a classical 4-band filter bank by this
simple following unitary transformation:
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G (m) = U.H (n)

Hz 0 ..... 0
) 0 Hy O . 11
with U = o H, 0 andH2=‘/—_2_ L
0 ..... 0 Hz

This is equivalent to say that filters gy (n) are given by:

|g2k(n) =12 [h2k(n)+h2k+,(nm

|8zk+1(“) =12 [h2k(“)'h2k+l(“)]|

Figure 2 gives the time and frequency responses of initial
filters hg, h; and the modified filters gg, g;.

It is easy to see that gg and g; are two times less localised in
the frequency domain than hg and hy but are two times more
localised in the time domain.

Remark: this new filter bank is not a “true” 4-band filter
bank but the time/frequency resolution it performs is similar to the
one of a “normal” 4-band filter bank. In practice, tested on
synthetic images (like the zoneplate image) and natural images,
this “false” 4-band filter bank solution is as efficient in term of
frequency selectivity, PSNR and subjective quality than a
classical 4-band solution with filters of similar number of taps.

For a more complicated and useful example we can try to
simulate with a regular 8-band modulated filter bank the
time/frequency resolution of the wavelet decomposition which
goes up to level 4, as in fig 3.c )

To do such a decomposition in a first and simple stage we can

apply:
G, (n) = U.H (n)
1 0 ..... 0
01 o0 . 11 ; H; Hy
U= s H2 —_ s Hg = ==
0 H, 0
2 V2 1 -1 V2 H; -H;
0 ..... 0 H4

U, to now the gy ,(n) filters have the time-frequency
resolution as in Fig 3b. To obtain the decomposition as in Fig 3¢
we can modify the filters gk_p(n) to obtain the resulting filters

fk,p(n) by:
fy p(n) = g, (n)

[fo,zp(n)y fo,2p+1(n)]t = Hz-[goyzp(n)y go,;pu(“)]t k=0

for k=0

111.2 Time Varying solutions

In the CCETT (our company, a France Telecom research
center) we are beginning to experiment the technique developed in
this paper to built Orthogonal Time Varying solutions applied to
image coding. The idea beyond that is: For homogeneous areas
we should be much selective in the frequency domain but less
selective in the time domain, so that the mean value of a large area
is only represented by one transformed coefficient (example:
going from a 8*8 to a 16*16 like decomposition). For edges areas
on the contrary we should have selective filters in the time domain

so that few filters will have a strong correlation with the edge and
the quantization error will be located very close to the edge
(example: going from a 8*8 to a 4*4 like decomposition). For
textured areas an intermediate solution should be applied as the
one in Fig 4.

This selection can be done in the X direction, the Y direction,
both direction and on a field or frame basis if the images are
interlaced (see [S]). Up to now we developed a simple solution
with around 8 possible candidate unitary transforms applied to the
same sets of filters and selected according to a simple criterion.
As the filter banks are orthogonal, the L2 norm is always kept
whatever the candidate unitary transform selected. Consequently
the L1 norm gives a simple way of knowing if the energy is
concentrated on few transformed coefficients or highly spread in
the transformed domain. We select then the unitary transform
which gives the best energy concentration or equivalently the
smallest L1 norm. Even in its immature stage this solution gives
already some interesting results (0.5-1.0 dB PSNR improvement
compared with classical 8*8 solution [5] for the same bitrate) but
it is to be refined much further with more tuned unitary
transforms, a better criterion, a optimised initial filter bank... For
example instead of choosing predefined unitary transforms we
could have a LBG like approach to built a dictionary of candidate
unitary transforms.

CONCLUSION

We developed a simple and practical technique to design
orthogonal Time Varying Filter Banks. In this approach, we do
not have to care about Perfect Reconstruction problems. PR is
always guaranteed. We do not have to calculate transient filters
because we do not have transient filters. This approach can be
done in a very efficient hardware saving manner. With this
technique and an initial regular M-band filter bank, like the
efficient M-band modulated solutions developed in {4,5,6], we
can simulate almost any time/frequency resolution decomposition,
and for example the irregular frequency decomposition of a
wavelet or wavelet packet transform as in fig. 3 or 4
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Fig2: Time responses (Fig. 2a and 2b) and frequency
responses (Fig 2c and 2d) of filters hy, h,, g, and g,

1] Fig. 3a T 0 } 0Fig. 3b | TC

Fig 3: 3b and 3¢ are examples of irregular frequency
decompositions easily obtained starting from
the 3a regular decomposition

) 0 Fig. 3¢ T

Fig 4: An irregular decomposition well suited
for general interlaced image coding
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