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ABSTRACT

This paper demonstrates that the scalar non-linear
gain-plus-additive noise quantization model can be
used to represent each vector quantizer in an M-band
subband codec. The validity and accuracy of this an-
alytic model is confirmed by comparing the calculated
model quantization errors with actual simulation of
the optimum LBG vector quantizer. We compute the
mean squared reconstruction error(MSE) which de-
pends on N the number of entries in each codebook, &
the length of each codeword, and on the filter bank co-
efficients. We form this MSE measure in terms of the
equivalent scalar quantization model and find the opti-
mum FIR filter coefficients for each channel in the M-
band structure for a given bit rate, given filter length,
and given input signal correlation model. Specific de-
sign examples are worked out for a 4-tap filter in a
two-band paraunitary structure. Theoretical results
are confirmed by extensive Monte Carlo simulation.

1. INTRODUCTION

Subband coding and vector quantization have been
shown to be effective methods for low rate coding of
speech, still image, video, and HDTV signals[1]. The
idea of subband coding is to split the frequency band of
the signal into a number of subands and then to encode
each subband separately using a bit allocation algo-
rithm which reflects the energy in each subband. The
system under study is the critically sampled filter bank
shown in Fig.1(a). The codebook for the vector quan-
tizer for each channel is constructed from the Linde-
Buzo-Gray(LBG) algorithm{8] using 500,000 samples
of an AR(1) signal z(n) passed through a bank of FIR
filters designed under PR constraints. The overall con-
straint for the structure is B bit/sec which is to be
allocated among these M channels,

1 M-1
i > B; =8B (1)
i=0

where B; is the number of bits allocated to quantizer
Q;. Each VQ has a codebook of N; entries of length
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ki, and therefore B; satisfies

loga N;
Bj = TJ— (2)
7

Fig.1(b) results from a polyphase transformation of
the filter bank and the scalar quantization models de-
scribed in the sequel. These can be analyzed and opti-
mized using scalar optimization method in Ref[2],[3].

2. MODELING THE VECTOR
QUANTIZER

2.1 VECTOR QUANTIZER

As shown in Fig.2(a) an N-level k-dimensional
quantizer is a mapping, @}, that assigns to each in-
put vector, v = (vo, v1, .., ¥k—1), & reproduction vec-
tor, # = @(v), drawn from a finite reproduction al-
phabet, A = {8;;¢ = 1,2,..., N}. The quantizer Q is
completely described by the reproduction codebook A
together with the partition, S = {S;;¢i = 1,2,..,N},
of the input vector space into the sets S; = {v; Q(v) =
9;} of input vectors mapping into the i-th reproduc-
tion codeword. The quantizer performance can be
measured by the distortion, D = +E|[v — Q(u)||™,
where ||.|| denotes the usual Iy norm. We wish to
choose 71, ...,y to minimize D). The k-dimensional
m*? power distortion-rate function of an optimal vec-
tor quantizer in high resolution is given by

Db o(B) = C(k, m)2~(m/B / [p(2)]*/ (4R g} (R &

(3)
in Ref[4],[6]. The constant C(k,m) is a function of
the vector dimension k& and of m and represents how
well cells can be packed in k-dimensional space. The
density function p(v) is the k-dimensional joint pdf of
the vector process. The properties of an optimized VQ
for mean squared error distortion over a frame are[9]

E{zg} =0, E{2's}=0. (4)
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2.2 APPROXIMATE OPTMIZED VEC-
TOR QUANTIZER MODEL

According to Jayant & Noll[5], the short-time pdf
of a speech segment can be approximated by a Gaus-
sian pdf. The mean squared quantization error aver-
aged over a frame in optimized vector quantizer coding
can be computed approximately using the asymptotic
distortion-rate function derived for a Gaussian random
signal[7],

Db a2~ 2B (detT) ¥ 262 (5)

where k, B and T’ denote respectively the vector di-
mension, the number of bits allocated to the quantizer
and the covariance matrix of the input signal, and r
is a correction factor

T = 2mek(1 + %)k/zﬂ (6)

where ¢ is the quantization coefficient for the VQ. The
coefficients of quantization values are unknown except
for k = 1 and 2. However, there are a number of ap-
proximations based on lower or upper bounds. The re-
sults in this paper are based on using the values given
by the Voronoi lattice upper bound[6]. It is computa-
tionally burdensome to directly estimate detI'. How-
ever, using the Toeplitz distribution theorem[5],

len;lo detI‘l/" = CZP[QLTI_/ IogeS:uz (ejw)d""] = af,min

(M
where Sy;(e?%) is the power spectral density of the
random signal {X(n)} and o2 ;. the energy of the
minimum prediction error. When the vector dimen-
sion k and the predictor order are reasonably large,
the quantization error in Eq.(5) can be further simpli-
fied to

D(“, zr2'23/k02 (8)

where o2 is the variance of the prediction error se-
quence using a finite memory optimal predictor in
mean square sense[5].

For a scalar pdf-optimized quantizer, the quantization
error variance in each channel is

of, = B(B;)27*Pio} (9)

where o'J is the variance of the signal input to the
quantizer and B(B;) depends on the pdf of the input
signal v and on B;. Then the optimum allocation of

bits is known to be
1 o}
B; =B+ —-1092—]-—- (10)
2 T oy

This result implies that the relation between the dis-
tortion and bit-rate used for coding each speech vec-
tor (having a resonably large dimension) in VQ coding

reduces to the same form as that used in the conven-
tional memoryless scalar quantizer, except that the
scalar signal variance is replaced by the prediction er-
ror variance.

3. GAIN-PLUS-ADDITIVE NOISE
MODEL FOR VQ

The gain-plus-additive model for the pdf optimized
scalar quantizer is shown in Fig.2(b). In that model,
we know{3],[5]

E{3} =0, E{#9}=0 (11)
o 2 2 2
a:l—;uz-, o: =a(l —a)o, = aoj. (12)
We show that this represention can also be used for an
optimized VQ. The distortion per frame in the LBG
algorithm is

1 n
p>

i=n—(k-1)

lv(3) — 9(5)]%. (13)

We show that this distortion measure equals D{",Q of
Eq.(8).
o Assume E{|v(n —i) — 9(n —1)|*} is same for all i
in that block. Can we use D’{,Q of Eq.(8) as this
measure ?

o Is it true that 9(n — ¢) is orthogonal to #(n — 9)
as required by Eq.(4) 7, where 9(7) = v(i) — 9(7).
Thus, we calculate E{fz(z)} and E{06(¢)9(7)} as follows.

o E{5(3)} — ¢ Z *~ ! 5(3) for each block; then sum
over blocks.

o E{6(i)o(i)} — L3°E1a(i)(i) for each block:
then sum over alf blocks.

From these simulations we will show that E{#(¢)} ~ 0,
E{(i)5(i)} = 0. So, we can use Df 5 = 727 2B/*g2 =
F 2 icn—(k-1) |2())=2(3)|* in the pdf-optimized vector
quantizer. Comparing Eq.(11) and (12) for the scalar
quantizer with Eq.(8) for VQ, we see that if o2 of VQ
obtained from o7 = ¢ Z _0 o3, per block and aver-

aged over all blocks equals o2 of the scalar quantizer,
we can say

2 9—2B/k 2
a=1-2=1-2__"% (14)
au U‘U

7, which depends on k, the vector dimension, is given
in a table in Ref[6). Also from the theory of linear op-
timum prediction(5] 0? = E{($—v)?} and the optimal
prediction error is represented as

ol =yl (15)
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Thus ,
T2 2Bk (16)

where 72 is the spectral flatness measure which is the
reciprocal of the maximum prediction gain

[maz{=G,}]™*  (17)

a=1-—

ys = min{®0l}/oy =

where Gp is the prediction gain of predictor[5]. Note
that 72 is independent of the quantizer. We calculate
72 in the following way. Consider a zero-mean process
{X(n)} with power spectral density Sez(e/¥). This
signal is filtered by H(e/*). Its filtered signal spectral
density is Syy(e/*) = |H(e“)|?Ss0(e’*) and 72 is

2 _ exp[# ff,r IOgeva(ejw)dw]
Yo = #]‘f” va(ejw)dw .

(18)

Eq.(16) gives us a theoretical value for o. Then use of
Eq.(14) gives 02 = (1 — a)o?. This theoretical value
is compared with simulated quantization error vari-
ance. In our case, B is small and k = 8 is also small.
Therefore to improve the accuracy of the model we
introduce an empirically determined correction factor
§ which depends on B and k[7]. Hence

a=1— 72 AB/K=8),2 (19)

The optimized VQ mean squared error is now
o-é = T2"2(B/k"5)730'3. (20)

4. SIMULATIONS

1. Aninput AR(1) (p = 0.95, mean=0, var=1.0) sig-
nal is passed through a 4-tap Binomial QMF[10].
This filtered signal is used as a training signal for
codebook design using the LBG algorithm. We
choose k=8 for vector dimension, N=32, 64 for
codebook addresses, and n=500,000 samples for
training sequences. The number of training vec-
tors used in codebook generation is > 100N . The
average distortion in this algorithm is the mean-
square error distortion. We show simulation re-
sults in Table 1. From these simulations we see
that E{3(¢)} ~ 0, E{9(3)3(¢)} ~ 0. The require-
ments for the pdf optimized quantizer of Eq.(11)
are satisfied. So, we can use D"",Q =12 2B/kg2 =
%Z?zn_(k_l) |v(2) — 9(3)|? to measure distortion
in the optimized vector quantizer.

2. We compare E{]f)(z)Lz} from test on VQ ex-
perimentally with ¢f from theoretical scalar
gain-plus-additive noise model Eq.(18) and (19).
These results are shown in Table 2 with the cor-
rection factor § equal to zero. An even closer
match can be found by selecting, 8, from the em-
pirically obtained universal table, as shown in Ta-
ble 3. From these simulations we conclude that

optimum vector quantizer in an M-channel sub-
band coder can be modeled by the scalar gain-
plus-additive noise scalar model.

3. We design specific example for the paraunitary,
two band 4-tap case. The optimization algorithm
is based on the exhaustive search of all possible
bit allocations constrained by the total number of
bits with Monte Carlo simulation. And we choose
the one with minimum MSE among them. Con-
sidering the complexity of vector quantizer, we
choose bit rate from 0.5 - 1.0 bit/sample. We as-
sume that each quantizers are to allocated only
integer bits and the high frequency components
of the subband signal gets at least 1 bit and the
low frequency compoments of the signal gets max-
imum 11 bits for a codebook with 2048 entries(or
11/8 bit/sample). Also, we choose test sequence
with 64,000 samples to validate the theory.

4. Calculation Procedure

(a) Fix B, k, p, and codebook.

(b) Choose ho(n).

(¢) Calculate 7, ¥2, a, and o2.

(d) Calculate optimum hy(n) using approach in
[2] and MSE (Mean Squared Error).

(e) Is (MSE)* < (MSE)i~! ? If yes, go to step
(¢) and if no, stop.

5. CONCLUSIONS

We actually used the scalar model for the VQ’s
and formulated MS reconstruction error as in Ref{2].
The optimal filter coefficients for the paraunitary, two
band 4-tap case are shown in Table 4 and Table 5,
along with comparision of the MS reconstruction error
as obtained by Monte-Carlo simulation and as calcu-
lated using our model. We conclude that the scalar
gain-plus-additive noise model provides an accurate
represention of the optimum VQ in a subband codec
and can be used as the basis for the design of optimum
filter banks in presence of VQ’s. -
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Figure 1: (a) M-band filter bank structure with
vector quantizers, (b) polyphase equivalent structure.
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Figure 2: (a) vector quantizer, (b) equivalent scalar
gain-plus-additive noise model.

Codebook || E{8(i)} | E{s(i)s()} | E{v*(D)} | E{5()|*}
N=32,k=8 -3.57E-4 8.97E-4 1.9651 0.1187
N=64,k=8 -2.25E-4 2.32E-3 1.9651 0.0861

Table 1. Simulation results using AR(1) signal
(n=500,000 samples, p=0.95) for LBG Vector
Quantizer.

E{o()[*}sim | o3
0.1187 0.1152
0.0861 0.0969

Bit rate (B)
0.625
0.75

Table 2. Comparision E{|9(i)|?}sim from test on VQ
experimentally with o2 from equivalent scalar
gain-plus-additive noise model theoretically.

B 0.25 0.5 0.75 1.0
k=38 0.5450 | 0.1499 | -0.0853 | -0.2434
k=12 || 0.1323 | -0.2855 | -0.5371
k=16 || -0.1476 | -0.5780

Table 3. Values of § for AR(1) Gaussian input. B is the
VQ rate in bit/sample, k is the VQ dimension.

[ B [ Bo[Bi| MSE [ MSEgim |
0.50 7 1 0.087293 | 0.088310
0.625 9 1 0.064425 | 0.064764
0.75 11 1 0.048300 | 0.049312
1.0 |11 | 5 ]0.041292 | 0.042670

Table 4. Optimal Bit Allocation and M SEim and
M S Emodei- Inside training sequence n=500,000 and test
sequence n=64,000 samples.

LB [ R0 [ k() [ ho(2 | ho(3) |
0.5 || 0.488488 | 0.832218 | 0.226195 | -0.132770
0.625 || 0.488485 | 0.832219 | 0.226199 | -0.132771
0.75 || 0.488486 | 0.832219 | 0.226198 | -0.132771
1.0 || 0.488478 | 0.832221 | 0.226204 | -0.132772

Table 5. Optimal filter coefficients for Paraunitary 4-tap
2-band Filter Bank.
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