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ABSTRACT

In this paper, methods for switching filter coefficients and fil-
ter bank structures and methods for processing finite length
signals will be studied. The problem of designing optimal
boundary and transition filters will be solved directly via
singular value decomposition (SVD) while the optimality
criterion is based on the subband statistics. The optimized
filters provide a good match between the subband statistics in
transition regions (and at the boundaries) to the statistics in
steady state. The filter banks considered are maximally dec-
imated M-channel linear and non-linear phase (biorthogonal
and paraunitary) filter banks with real filter coefficients.

1. INTRODUCTION

Several authors have proposed coding schemes based on
time-varying filter banks [8], [9]. The idea behind this is
to use an optimal filter bank for each region of a signal.
This means that we have to switch from one filter bank to
another when the signal statistics change. When doing
so, we need some transition filters in order to provide
an overall perfect reconstruction (PR), or especially, an
overall unitary system. However, when we switch from
one filter bank to another by using transition filters, we
want the characteristics of the transition filters to be
as similar as possible to the characteristics of the filters
being used in steady state. In other words, the output
signals of the transition filters should be almost identical
to those for a direct switch of coefficients. This requires
optimized transition filters.

When a finite length signal is decomposed by a max-
imally decimated filter bank, the number of subband
samples will be larger than the number of input sam-
ples, and simple truncation of the subband sequences
will cause distortions at the boundaries. Thus, circular
convolution ([1]), signal extensions ([2] - [5]), or special
boundary filters ({5] - {10]) are required in order to en-
sure that N samples can be represented by N coefficients.
Furthermore, the subband coding of finite length signals
requires that the statistical properties of the subband
samples representing the boundaries be equal or almost
equal to the properties of the other subband samples
(for stationary input signals), because we do not want to
change the bit allocations for the last few samples.

In this paper, solutions via SVD to the filter optimiza-
tion problems will be presented. As initial solutions, only
boundary filters derived by symmetric reflection and by
the Gram-Schmidt procedure will be considered, because
(unlike circular convolution) they lead to local opera-
tions.
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2. SUPPORT PRESERVATIVE SYSTEMS

In this section, basic results concerning support preser-
vative (SP) systems will be briefly reviewed, and the
notation will be introduced. A more detailed description
of these algorithms can be found in [5]. For the sake of
simplicity, the number of input samples () is chosen to
be an integer multiple of the number of subbands (M).
Furthermore, N is chosen to be large enough to ensure
that at least a few samples will be correctly recovered
when we analyze the time-limited signal like an infinite
length signal using the filter bank in Figure 1, truncate
the subband signals to a total number of N non-zero
samples and recover the signal like an infinite length
signal.

When extension methods are used in order to provide
a support preservative system, the analysis section of the
SP filter bank can be written as ([5])

e (B] o0

The vector # in (1) contains N input samples, and y
contains N subband samples. K'; and K5 are reflection
matrices. The matrix H has the structure shown in Fig-
ure 3. The definition of the M x M matrices H(n), which
are the building blocks of H, is illustrated in Figure 2. As
can be seen in Figure 2, the analysis filters are considered
as anticausal whereas the synthesis filters are considered
as causal (this allows us to avoid an overall delay). Note
that all types of reflections reported in literature can be
written in the form (1).

y:’HT:nE, zg=FE; =,

Reflection of signals may also be interpreted as reflec-
tion of impulse responses which results in a filter bank
with special boundary filters. This means that the ana-
lysis formula (1) can be written as

y=FT2, FT=H"E, (2)
where F is a N x N matrix.

The most simple approach for finding boundary filters
for the paraunitary non-linear phase case is to truncate
H toa N x N matrix H. of rank N,

HT = [Hy|HT | H] ], (3)
and to orthonormalize it by using the well known Gram-

Schmidt procedure ([5], [8]). This results in the N x N
unitary matrix

F=[FlyucC1Fr]y (4)
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Figure 1: Filter bank in direct form.
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Figure 3: Structures of matrices (for l-)) and c): Ly =35,
N=38M).
where F; and F, contain the boundary filters (see Fig-
ure 3). The matrix H,. belongs to the partitioning

Hc = [Hd | %cc I Hcr]) (5)

where H,. and H., contain the truncated impulse re-
sponses.

When paraunitary filter banks are considered, the syn-
thesis equation is simply # = F'y. For linear phase filter
banks, synthesis is usually performed by extending y
symmetrically, filtering, and windowing the output sig-
nal. However, the implementation of special boundary
filters (derived by reflection or the Gram-Schmidt pro-
cedure) will require fewer operations than the implemen-
tation of extension methods, and we should implement
FT and (FT)~! directly.

3. TIME-VARYING FILTER BANKS

As shown in [8], the transition filters for the parauni-
tary case may be found by using the Gram-Schmidt
orthonormalization procedure. However, once we have
found two SP systems (matrices F@ and F® accord-
ing to F in (2) or (4); signal lengths N, and N;) we
may combine both systems to one SP system for signals
of length N = N; 4+ N,. Clearly, if we do so, we switch
from one filter bank to another without overlap. This
may cause blocking effects in low bit rate applications,
but anyway, it is a posssible strategy and we are not re-
stricted to paraunitary systems. Methods for designing
better (overlapping) filters will be presented in the next
section.

4. FILTER OPTIMIZATION
In the previous sections, it was outlined how SP filter
banks can be achieved and how the switching of filter
banks can be performed easily. However, we have not
taken the statistics of the subband signals into account.
Especially, when we use the Gram-Schmidt procedure,

we may end up with boundary filters that lead to un-
desirable subband statistics. In this section, it will be
shown how optimal boundary and transition filters can
be found.

In order to get a unified framework for matrices F
constructed by reflection or orthonormalization, F' and
y will be partitioned as

F = [F\|Fy|F3|F4|Fs], (6)
vT = [Twlldlvilvi],
In (6), the matrices F'3, F3 and F4 contain the original
coefficients of the analysis filters. F'; and F's contain the
boundary filters; F» has the same size as F'1, and F4
has the same size as F's.

4.1 Energies of Subband Signals

Before we start to optimize filters, let us discuss the
distribution of signal energy to the boundaries in a single
SP system for stationary input processes.

Paraunitary linear-phase filter banks having even-
length filters are the most desirable ones, because sym-
metric reflection methods lead to unitary transform ma-
trices F, and due to symmetry and the Parseval identity,
we have By = Ey = E4 = Es, E; = E{yfy;}. This is
the best precondition for achieving good statistical prop-
erties of the subband signals in boundary regions.

Paraunitary non-linear phase filters become impor-
tant when orthonormal wavelet decompositions are con-
sidered. In this case, the energies E; and Es depend on
the prototype filters and may be different to a significant
extent. However, once the prototype filters are fixed and
the matrix H, in (3) is defined, the energies E; and Ej
are fixed for given input statistics. For a stationary in-
put process and vectors ¢, and ys of the same length,
we have E1+ E5=2FE,=2F,4.

When using biorthogonal filter banks, we have more
freedom in distributing the subband energies, but we
also have to take the energies of the synthesis impulse
responses into account. These energies may be different
so that quantization errors can be amplified differently.

Y = F?z.

4.2 Optimization of Boundary Filters for SP Systems

Let us consider a stationary input process, and let
the energies of y; and y; be fixed. Note that we still
have an infinite number of choices for F'; and F's so
that we have the possibility of distributing the energy
properly to the coefficients in y, and y; by rotating the
subspaces spanned by the columns of F'; and F'5. This
rotation can be expressed by multiplying F'; and Fs
with unitary matrices @, and Q;:*

F = [F,Q,|F;|F3|F4|FsQs],
5" AP R

Y]

y p—

1When we rotate the analysis filters, we have to rotate the
synthesis filters also. Given an analysis/synthesis system of the
formy = FTz, & = (FT)~1y, we may express the optimal system
as § = BTFTx, & = (FF)~1 Bf, where B contains all rotation
matrices. The structure of F is illustrated in Figure 3.
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The following optimization method is based on the
idea of linearly predicting the missing samples at the
boundaries. To explain this, let x be a realization of the
stochastic process . From (6), we have y; = F3x. Now
let us try to compute the vector y2 once again by shifting
the samples in x upwards by Ng positions and using the
matrix Q7 FT for analysis (Ng is the number of rows of
H, in (3) which is equal to the number of samples that
would be extended). In matrix notation, the operation
can be written as

v = QTFT sx, ©(8)

where S has the size N x N and contains the non-zero
elements S;iyn; = 1, i = 1,...,N — Ng. Since we
have missing samples in Sx, we will not be able to make
v equal to y by choosing Q,, but we may view d =
Y, — v as a stochastic process and minimize the energy
¢, = E{d¥d}, which can be expressed as the trace of
the correlation matrix E{ddT}:

é1=trace{[F2 — STF1Q,]T R..[F2— STF1Q,]}. (9)

In a further step, we compute (in mind) a Cholesky de-
composition of the autocorrelation matrix of the input
process (LLT = R;;) and write the objective function
as

¢ = |L7F, - LTSTF1Q1"; L omin,  (10)

where norm ||-|| is the Frobenius norm. The solution to
(9) is given by Q, = UVT  where USV7 is the SVD of
the matrix FTSR,,FZ (see [11] for the subspace rota-
tion problem). Note that since F; and F, may contain
many zero elements, the correct matrix C can still be
computed when F'1, S, R;, and F'; are truncated prop-
erly. The matrix Q5 that minimizes an objective function
#5 according to (10) can be computed in the same way.
4.3 Optimization of Transition Filters

Let us start with the transition method mentioned in

section 3:
F& ¢

Now let us partition the matrix A as follows, where A,
contains the transition filters (Ff,,“) and F(lb)):

A=[A|A|AL]. (12)

For the optimized transform matrix, we use the structure

A=[A1]A.Q.|A]. (13)

This means that we rotate the last columns of F(® to-
gether with the first columns of F®*) and get overlapping
transition filters. Like in section 4.2, we define an objec-
tive function of the form

y=ATz,

b = “LTX -17A4.Q,|" < min. (14)

2
F

24 [ b X

Ffigure 4: Transition filters for a switch of filter coefficients
(from Lp =5 to L, = 3)

The matrix X contains filter coefficients that lead to our
desired subband statistics during transition. The optimal
matrix Q, is given by Q. = U VT, where ULV is the
singular value decomposition of the matrix AZ R..X.

5. RESULTS
To give a simple example, a switch from a four-channel to
a two-channel paraunitary non-linear phase filter bank
will be considered. The four-channel filter bank is ob-
tained by using a tree structure where the high- and
low-pass branches of the two-channel filter bank are split

into high- and low-pass branches again (using the same
filters).

First, a low-pass prototype (h§ (n)) that leads to min-
imum cross-correlation between the low- and high-pass
branches in the two-channel filter bank will be consid-
ered. The coefficients are listed in [5], Table I.

The initial boundary filters for both filter banks were
found by Gram-Schmidt orthonormalization. For a joint
optimization of all transition filters, X is chosen to be
the transition matrix for a direct switch from the four-
channel filter bank (a) to the two-channel filter bank
(b) so that (using X') we could directly switch our bit
allocations. The input process is a stationary AR(1)-
process with p = 0.95.2

Results are listed in Table I. We see that the optimized
boundary filters have much better statistical properties
than the initial filters. The values of ¢. show that it
i1s worth optimizing the transition filters jointly. This
can also be seen in Figure 5, where the variances of the
subband signals are shown for an input signal of length
N = 128 and a switch of the filter bank structure after
64 samples.

The filter bank used in the first example already dis-
tributes the energy very symmetrically to the boundaries
(for a non-linear phase filter bank). The decrease of ¢.
due to a joint optimization can be much larger when we
switch between non-linear phase filter banks that dis-
tribute the energy more unsymmetrically to the bound-
aries. Figure 6 illustrates this for the 8-tap Daubechies
filters.

6. CONCLUSION
In this paper, design methods for support preservative
and time-varying filter banks have been presented. Direct

2 Although we would not switch in practice when the input pro-
cess is stationary, we can use X for the design of good transition
filters.
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Figure 5: Variances of subband signals in dB. Results

for initial and optimized boundary and transition filters

(h§ (n), AR(1)-process with p = 0.95)

solutions via SVD to the problem of finding optimal
boundary and transition filters have been given. Using
these methods, desired statistics at the boundaries and
in transition regions can be matched easily. The algo-
rithms can be applied to all FIR filter banks including
biorthogonal and pseudo-QMF banks.
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