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ABSTRACT

The design of rate-changing multirate systems using a maxi-
mum relative £2-error criterion is analyzed. Using multirate
techniques, the criterion is simplified to a matrix-response
approximation problem. An algorithm using convex opti-
mization is proposed to solve the problem. An example
illustrates the use of the algorithm and effectiveness over
methods intended for LTI system design.

1. INTRODUCTION

Designing multirate systems such as the one shown in Fig-
ure 1 (commonly called rate-changing systems) with L and
M relatively prime has been considered by many authors
(1, 2]. Most approaches to the problem are motivated by
either stochastic techniques, error with respect to a pa-
rameterized input class, or function approximation. Our
technique attempts to minimize the maximum relative er-
ror with respect to a general class; this approach is useful
if little is known about the signals to be processed. We
note that our error measure has been proposed as a general
criterion for multirate systems design in [3]; we analyze in
detail the design of rate-changing multirate systems.
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Figure 1: Multirate System to be Designed.

The criterion for the design of these systems is as fol-
lows. First, consider the error signal, w, produced by a FIR
multirate system approximating an ideal multirate system
for a given input, z, as shown in Figure 2.

A good performance measure for the FIR multirate system
is the maximum relative error in norm:
llwllz
(1)
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where for arbitrary x, |||z = e oo

norm. The design problem then is to find:

AFIR,best = argmin max e .
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(2)
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Figure 2: Comparison of Ideal and Approximate Multirate
Systems.

This criterion is a natural generalization of the standard
Chebyshev error [3] and is commonly used in H*-control
theory [4, 5]

2. ANALYSIS

2.1. Simplification of the Error Criterion

In this section, we put (1) in a more manageable form. The
system in Figure 1 is equivalent to Figure 3, [6].
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Figure 3: Matrix Form of the Multirate System.

T(z) = [T:,;(z)] is an L x M matrix of filters,

tij(n) = h(MLn + Mi — Lj) (3)
1=0,...,L—1,5=0,...,M — 1. Py is the M-polyphase
decomposition and ’P;l is its inverse; l.e., if

X(z) = Z 27 Xi(2M), (4)

then

T
(2(Pum(z)))(z) = [Xo(2) Xm-a(2)] . (5)
Z indicates the z-transform. The double arrow in Figure 3
indicates a vector signal.
Because P() is unitary, the error criterion (1) can be
expressed as

max || Trr(f) ~ Tideat ()2 (6)

0<s<1
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where ‘max’ is used since the normed matrix function is
assumed to be piecewise continuous with the maximum oc-
curring on one of the pieces.

We now relate the matrix form of Figure 3 to the stan-
dard representation in Figure 1. The ith L-polyphase com-
ponent of the output, y;, is obtained from the ith row of the
matrix as shown in Figure 4(a). This structure simplifies
to Figure 4(b).

g — Py =) T, —> ¥
(a)

z —»G,(2)—> lM —

(b)

Figure 4: (a) One row of the matrix. (b) Rearrangement of
the row.

Using Figure 4, Figure 3 simplifies to Figure 5 where G =
T
[Go ... Gr-1] and

Gij(z) = {Ti’o(z) 7=0 (M

2T m—j(z) 7=1,...,M - 1.

We refer to Figure 5 as the canonical form. Here G; ; is the
jth M-polyphase component of G;. The G; are related to
H in Figure 1 (see [7]) by

Gi(z) = 2% H,,(2) (8)

where Mi = ¢;L+r;,0<r; <L, 0<i< L~-1,and H,,
is the r;th L-polyphase component of H.

z—>» G ‘:{>lM:{>PL—1——+y

Figure 5: Canonical form of the sampling-rate converter.

The criterion (6) cax; now be related to Higeal and Hpr
using the modulation representation [8] (or alias-component
form) and equations (7) and (8). For the filters given by
(8) let Goa be

Go(f)

Go(f+ 31) Go(f + 474)

Gr-1(f) Graalf+3p) Gra(f+244)] ©
Now let GEI®, and Gi4°3! be the matrices given by (9) for
Hpir and Hjdeal, respectively, in Figure 2. Then (6) (and
thus (1)) can be expressed as

5t \/—II mod(f) = Gmsd ()]z- (10)

Now write each GT™® as

GI™(f)= D gipe ™. (11)
k=—N;

Define E; i to be the matrix whose (7, k)-th entry is 1 and
has zeros elsewhere. Also, define

M—1
Xin(f) = Z eIt IIE, | (12)
=0
Then
Groa(f) = Z Z gi kX k(f)- (13)
=0 k=—N;
Define
go,— Ny
go,M,
g = : (14)
gL—-1,—-Np_,
| 9L—1,Mp _, |
Re(g’
&= [Imgg'g] ()
e(g) = 9gi, kxl k G:::a (f)”
N ghizst Z; k_z_:N (16)
Then the design problem (2) becomes
gbest = argmin e(g). (17)

2.2. Analysis of the Error Functional

The error functional, e, given by (16) is convex. This crucial
fact is the basis for our solution method detailed in the next
section. In order to use this method, the subdifferential [9]
of e(g) is needed. We state some definitions and then give
the subdifferential.

Define an inner product between two L x M matrices
C and D by

l‘*

-1 M-1
tr(DFC) = cijdi; (18)

0 j=0

(C,D) =

Define
e—i2mk(f+37)

X:(f) = . (19)

e—J2mk(1+ Mzh)
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Then
= co a: — L nH i ] ]
de(g) = co{alaix \/HXk(f) 5, (6,F) € 5(8)%20)
where
S(g) = {(8', f')| Re((Grnoa(8, f') — Gmea (£),4")) = e(g)}.

(21)

In (20), “co” indicates the convex hull, and 4§} denotes the
transpose of the ith row of §’. Explicit dependence of GEIY
on g is also indicated. Finally, the indexing for a is specified
in the same way as for g in equations (14) and (15); if a
real FIR solution is desired, then the g; x’s are real, and the
“Im” part should be omitted in g and a.

3. SOLUTION METHOD

Our solution method is based on recent advances in con-
vex optimization. We have implemented the algorithm de-
scribed in [10] for convex optimization. This method is part
of a general class of methods known as bundle methods [11].
These methods optimize by bundling information about the
function and its subdifferential to obtain descent directions.
The method dynamically constructs a piecewise linear ap-
proximation, fcp i, of the function to be optimized. A local
optimization involving fcp i is then solved using trust region
methods. This optimization produces a direction which is
either used to gather more local information or as a descent
step. For more details, we refer to [10].

We now describe our methods of calculation for the data
needed in the algorithm. The first datum that needs to be
calculated is e(g). For fixed g define

L
vM

Dependence of N on g will be indicated by writing N(g, f).
We calculate on a grid of frequencies {f;} the maximum of
N(g, fi); this gives a suitable approximation to e(g). Usu-
ally the response of the ideal system is given in term of
the filter Higea1. By calculating Hidea1(f) on a grid and us-
ing (8) and the modulation representation, one can find the
responses {G14°®} of the canonical form filters.

The other datum to be calculated is a subgradient at
a given point, g. Suppose N(g, f) obtains its maximum
at f'. Then calculate any normalized left singular vector,

u, and its corresponding normalized right singular vector,

v, of 7=Grii(8, ') — 7z Gined (f') which belongs to the

singular value N(g, f'). The formula for a which appears
in equation (20) with &' = uv¥ then gives a subgradient in
9¢(g)-

Finally, we comment on several aspects of our method.
First, the method is globally convergent; this property is
shown in [10]. Second, an acceptable convergence rate is
observed in practice; this feature is mentioned in [10] and
was also observed for the optimizations performed. Third,
local convergence might be accelerated using optimization
methods tailored to the structure of the problem. Many
advances have been made towards this goal [12, 13].

N(f)= |G (8, f) — Gaed (f)ll2 (22)

4. EXAMPLE

We now consider the design of an optimal Hpr for the
system in Figure 2 with L = 2 and M = 5. Let Hrn
be linear phase, length 101, and have real coefficients. Let
Higeal be linear phase and have group delay 50. Figure 6(a)
shows the magnitude of the desired response of Higea1(f)-
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Figure 6: (a) Magnitude of the Frequency Response of the
Ideal Filter. (b) Magnitude of the Frequency Responses of
the Canonical Form Filters.

‘We specify the transition region for the ideal filters
{Gi3°*!} since they are directly related to the matrix form.
First, we note that |G§d°‘l(f)| is the same for all . Sup-
pose a transition region of [.18,.20] is desired for |Gl ( f)|.
Then because of the periodicity of the entries in (9} and the
conjugate symmetry of the responses (because the filters are
real-coefficient), the transition region must be enlarged to
[0,.02]U[.18,.22]U[.38,.42]. The resulting response is shown
in Figure 6(b).

The magnitude of the frequency response of the result-
ing optimal Hpr is shown in Figure 7. Figure 8 shows
N(f) for the optimal Hpir in [.02,0.18] (i.e., [0, 7] mi-
nus the transition region). The maximum relative error
is 0.00441. For comparison, a length 101 linear-phase filter
was designed with the Parks-McClellan algorithm [14] using
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the transition region [0,.01]JU[.09,.11]U[.19,.21]U[.29,.31]U
[.39,.41) U [.49, .5]; the maximum relative error in this case
is 0.00725. The dotted line in Figure 8 shows N(f) for the
Chebyshev design. Note that the error is decreased by 64
percent with this new design.

Magnitude

0.2 03 0.4 0.5

Figure 7: Magnitude of the Frequency Kesponse of the Op-
timal Hyrin.
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Figure 8: Solid Line—Plot of N(f) for the Optimal System.
Dotted Line—Plot of N(f) for a Chebyshev Design.

5. SUMMARY

We have presented new analysis and a new design method
for multirate systems for rate-changing. The analysis in-
volved the rearrangement of the design problem to a ma-
trix response approximation problem and an analysis of the
resulting error functional. The design method involved the
formulation and solution of the approximation problem as a
convex optimization problem. An example illustrated many
aspects of the new method including gains over traditional

Chebyshev-based methods. The application of these meth-
ods to other multirate systems is currently being investi-
gated.
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