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ABSTRACT

An efficient technique for sampling rate conversion for arbitrary
(incommensurate) ratios is proposed. The technique is based on
fractional delay filters that are efficient to implement and that
can be controlled with a small number of arithmetic operations
per output sample. We consider an application in digital televi-
sion (DTV) transmission where, according to present standard
proposals, conversions between several incommensurate sam-
pling rates must be possible. Rather than trying to design sepa-
rate fixed filters for each possible conversion, we outline a sys-
tem which may be tuned for any possible downsampling ratio. A
sampling rate conversion system based on the straightforward
and simple Lagrange interpolation technique is illustrated, with
a novel and highly efficient implementation structure. Various
error sources involved are analyzed and a mean-square-error
(MSE) type cost function is defined to aid in the system design.

I. INTRODUCTION

Sampling rate conversion is needed in several areas of digital
signal processing. Conversion by a rational factor is easily
done with a proper lowpass filter and a preceding insertion (in
upsampling or interpolation) and subsequent cancellation (in
downsampling or decimation) of samples [1], [2]. The rational-
factor sampling rate conversion can be implemented efficiently
with a polyphase structure [3]. A polyphase implementation can
be viewed as a periodically time-varying linear filter, i.e., its
transfer function is different at contiguous sampling instants,
but there is a finite number of transfer functions that follow each
other periodically.

However, the sampling rate alteration by an ifrational factor
is a much more challenging problem. A brute-force device with
an extremely high upsampling before downsampling was intro-
duced in [4]. An approach involving interpolation techniques
for filter coefficients was introduced in [5], however involving
analog interpolation devices or computationally intensive coef-
ficient interpolation techniques. In [6], a block transform
method based on the chirp-Z transform was proposed, with the
inevitable block delay that is not acceptable in our application.

Recently Tarczynski et al. [7] proposed the use of fractional
delay (FD) filters for incommensurate sampling rate conversion.
They used a two-stage structure where fixed IIR filters estimate
the signal value at certain time instants between the samples.
The second stage includes a low-order Lagrange interpolator that
employs both the original signal samples and the results given
by the IIR filters. However, the order of the IIR filters is fairly
high, which increases the computational complexity.
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In this paper, we elaborate on the FD approach and develop a
system which is suitable for the proposed European digital TV
standard {8]. First, we introduce the environment with the
requirements for several downsampling ratios. Second, we con-
sider the implementation of a tunable FD filter suitable for the
downsampling application. Employing Lagrange interpolation
in the Farrow structure [9] results in a novel technique with an
efficient implementation.

The main contributions of this paper are the following. A
fractional delay-based sampling rate conversion technique based
on a novel implementation of Lagrange interpolation is intro-
duced. Detailed error analysis of the sampling rate conversion
system is presented. According to these preliminary results, the
proposed technique is a promising candidate to receiver realiza-
tions for the new TV standard proposal [8].

II. DTV PARAMETERS AND REQUIREMENTS

The European approach for digital TV standard proposes a multi-
rate system for satellite and cable distribution {8]. This means
that, depending on the available satellite transponder band-
width, the operator may choose his transmitted QPSK symbol
rate quite freely. The receiver must be capable to recognize the
symbol rate (and coding) used and to adapt itself to the signal
format. This sets a demanding problem for carrier and timing
extraction as well as for adaptive filtering at the receiver.

The baseband part of a receiver for satellite digital TV sig-
nals uses QPSK modulation. The IF signal is a bandlimited
passband signal with center frequency depending on the choice
of the manufacturer, e.g., 70 MHz. The QPSK symbol rate may
vary between 15 MBd and 30 MBd and be unknown to the re-
ceiver. The IF signal is demodulated into in-phase and quadrature
components using mixers and cos/sin signals as conventional.
The double frequency terms are eliminated using relatively loose
analog filters which have only minor effect in the desired low-
pass signal content. The resulting lowpass signals are then A/D
converted using five or six bits and a fixed clock frequency f,
which is assumed to be at least twice the symbol rate. For the
values above, this would suggest a minimum clock frequency of
60 MHz.

Signal shaping is made using a raised-cosine half Nyquist
filter with a roll-off factor & = 0.35. This filter must adapt itself
to the symbol rate. One way to arrange this is to use an FIR fil-
ter with fixed coefficients but having the clock signal to be an
exact multiple of (preferably twice) the symbol rate of the in-
coming signal (sampling frequency f,). This adaptation can be
achieved by using a fractional delay filter. Also a method to
adjust the effective sampling time to its optimum for the detec-
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tion process is needed.

In the demodulation scheme outlined above there remain
other nontrivial tasks to obtain the correct carrier phase and
derivation of the symbol rate and timing. In this paper it is as-
sumed that information about symbol rate and relative timing
delay D is available. We confine ourselves to the study of only
one branch (in-phase or quadrature) of the receiver.

In summary, the specifications for our sampling rate con-
version system are: input sampling rate f, =60 MHz, output
sampling rate f,,, = 30...60 MHz, conversion factor r = 0.5..
1.0, and approximation bandwidth [0, f,] where f,=
(1+a)f,/4 =0.675 f,/2 since a=0.35. Note that we have to
define the bandwidth for the widest possible case, f,, = f;.,
because we do not know it beforehand. The approximation
bandwidth is the frequency region where all deviations from the
ideal system should be minimized.

III. TIME-VARYING FD FILTER FOR
SAMPLING RATE CONVERSION

A. Problem Formulation

A sampling rate converter for a rational ratio conversion factor
is a periodically time-varying linear system. When the ratio of
sampling rates is irrational, a polyphase structure would include
an infinite number of branches. One approach is to sample a
finite polyphase grid and use linear interpolation to obtain fil-
ters in between [10]. In the fractional delay (FD) approach, we
use the interpretation that each polyphase branch approximates
a delay that is a fraction of the original sampling period. For
any conversion factor r the sampling rate conversion can be
implemented via time-varying FD filters whose coefficients are
updated for every output sample. Hence, the sampling rate con-
version problem can be turned into a task of implementing a
tunable FD filter at the original sample rate f,.

Let us now formulate the problem in more detail. Consider
the design of an FD filter for one output sample. The input sig-
nal is x(n) and the output signal of the filter h(n) is y(n) which
is desired to approximate the ideal delayed sequence y;;(n)=
x(n— D) where D is the noninteger (fractional) delay value. The
output of the filter is obtained via convolution as

y(n)=x(ny*h(n)= Y h(k)x(n—k) (1)
k=0
We define the output error as the mean square error between
the true and ideal response as

E, = E{|y(n) - )'id(”)|2} = E{lx(n)*[h(n)— hid(n)]lz} @

where E{} denotes the expectation value. This error function can
be turned into frequency domain via the Parseval theorem, i.e.,

4
E,= % [Sec(@)|He®) = Hyy (e do 3

where S, (@) is the power spectrum of the input signal and
H(e"") is the frequency response of the FD filter to be de-
signed, and

Hy(e!®)=e/P )
is the ideal frequency response of the FD filter. Now we will use
the assumption made in Section II that the input signal x(n) is
bandlimited in the range {0, @ ] =[0,2rn f &] Let us further as-
sume that the power spectrum Sp{w)=0;n/@, is constant
where 0'215 the input signal power. Hence, (3) simplifies to

2@ _ 9
E,=2x f |H(e!®) - Hyyte!®)| do )
®p 5

To make the error criterion independent of the input power, let
us define the normalized output error as

E 1“7 2
Enorm =5 =— [ |H(e™®) = Hyy(e?® )| do (6)
Or Wp
This is the final error measure to be used in designing the frac-
tional delay filter in our application.

B. FD Approximation Using Lagrange Interpolator
A number of techniques for fractional delay approximation were
reviewed in [11]. A well-known strategy to design FIR FD filters
is Lagrange interpolation, which is a maximally-flat approxi-
mation to ideal interpolation. It is particularly desirable because
of the closed-form solution of the coefficients and because it is
readily suited for efficient implementation with the Farrow
structure [9]. The filter coefficients A(n) are computed as [11]

Q)

k#n

where D is the desired delay and N is the order of the interpola-
tor. Although Lagrange interpolation is not optimal with
respect to the defined error measure (6) we will use it because of
its simplicity and efficient implementation.

C. Novel Structure for Lagrange Interpolation

In the sampling rate conversion application the key point is
to make the update of the filter coefficients fast enough while
maintaining sufficient precision in the approximation. We pro-
pose the use of a novel time-varying interpolator structure. It
was inspired by the idea of Farrow [9] that it is possible to write
the transfer function of an interpolating filter as a function of
the delay parameter D. This results in a structure that consists of
a parallel connection of (N+1) fixed transfer functions and N
multiplications by D. This so-called Farrow structure is well
suited for applications where frequent updates of the delay D are
needed: the transfer function is directly controlled by D.

Vilimidki has introduced a technique to design the Farrow
structure for the Lagrange interpolator [12]. This structure is
well suited for sampling rate conversion since, in addition to
frequent updates of the coefficients, the accuracy of approxima-
tion is critical at low frequencies. Figure 1 shows the new struc-
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Fig. 1. Novel structure for tunable 3rd-order Lagrange
interpolator.
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ture for the third-order Lagrange interpolator. Three delay ele-
ments, 11 additions, 3 multiplications by d (i.e., fractional part
of D), and 3 constant multiplications are needed. Multiplication
by 1/2 can be implemented as a binary shift operation.

IV. ERROR ANALYSIS

In the proposed FD-based sampling rate conversion system,
three main error sources can be identified:

1) Errors in the delay parameter D (constant bias error and ran-
domly varying zero-mean component). We assume that the de-
lay D is known, but in practice it has to be estimated from the
received signal which inevitably introduces estimation errors.
Furthermore, nonideal oscillators introduce jitter.

2) Approximation error. FD filter approximation introduces
predictable distortion, which fortunately can be controlled by
using appropriate techniques and high enough filter order.

3) Quantization error. Finite-precision signal presentation
introduces quantization error in A/D conversion and subsequent
processing. Here it is assumed that 5-6 bit input quantization is
the main error source and further processing uses much longer
wordlength so that errors can be neglected.

A. Delay Errors

Let us model the delay D as consisting of the ideal part and
two additive terms:

D=Dill +A+5('I) (8)
where A is a constant bias error and 8(n) is a zero-mean

stochastic error sequence with the variance 5. We will discuss
these two errors separately.

Al. Constant Bias Error in Delay

Let us first assume that delay error only consists of the bias term
A. It is easily shown that, in the ideal case, this appears at the
filter output as

y(n)=x(n—Dy—A)=hy (n)*x(n—Dy) )
where
sin[m(n-A)]
n(n—A)
This shows in the error variance as

hy(n)= (10)

n
Ey= E{|x(n— D)-x(n-Dy )[2}= %jsxx(w)h —e il 4o
0

1 @p o 2 sin(a)pA)
_— jo'x4sm (a)pA/2)dCD= 204| | -——— (1
w, 1 ®pA

, .
= Eafw,z,Az

where the last approximation holds for small values of A. The

squared amplitude error thus grows approximately directly pro-

portionally to the square of the delay error A in D.

A2. Stochastic Variation in Delay Error

Let us then assume purely stochastic zero-mean error process ( A
= (). Let us denote by ¢5(#n) the amplitude error sequence caused
by the delay error sequence §(n). An equivalent problem of time
jitter error of bandlimited sampled sequences has been consid-
ered by Papoulis [13]. According to those results, the error vari-
ance can be bounded by

Es = E{e}(m} < MI o} where M, = {]’I’w|X(ef“’ Jdo (12)
0

In our case we obtain

M, =— | w+/S . (0)dw =+ ——L
! n{ (@) 4R

(13)
which yields the stochastic delay error bound
2.2 .3
0,0 50
Eg<s—= L 14
°= " 4 (4

Assuming that the bias term and the stochastic component
are sufficiently small so that the corresponding error variances
can be added (no coupling), the upper bound estimate for the
composite error is obtained as

3 4n (15

: olo
Ey=Ey+E5< oﬁwf‘,[A—+—’i—ﬁ]
Hence, for wideband signals (wp = 1) the total amplitude error
variance due to delay errors is roughly proportional to the total
‘delay error power’, i.e.,

1
Eg = 5a,%a;,%(Az +03) (16)
Let us further normalize this error by the signal power.
Eow _1 2 2
ED=%=§(0P(A2+0'5) an
X

where subscript D stands for the delay error. Once the properties
of the delay error are known, its effect on the amplitude error of
the sampled signal is readily estimated via (17).

B. Approximation Errors )

The approximation error as defined in (6) is a function of the
defined bandwidth, filter order, and the fractional part of the
delay. The delay dependence is of particular interest. As it can be
assumed that in incommensurate-factor sampling rate conver-
sions the delay is uniformly distributed in a sampling interval
[Dg, Do+1] where Dy is an appropriate integer delay, the average
error is obtained from (6) via the formula
Dy+1

| EnormdD
Dy
Let us further assume that the filter length L is even, i.e. the
order N = L-1 is odd. In this case the worst-case normalized error
is obtained when the delay to be approximated is D = N/2, i.e.,
it is exactly between the two middle sample filters of the
approximating FIR filter. In this case the FIR filter has linear
phase and a symmetric impulse response. Hence, an upper bound
for the average error can be obtained by using the linear-phase
response.

What is even better, we have experimentally observed that
the error (6) depends on the fractional part d of the delay D
approximately according to the following formula:

Eppprm (D) = $in2 () Eppypy (N 1 2) (19)

This holds very well for odd-order filters, the better the higher
the filter order. For linear interpolation (¥ = 1) the peak devia-
tion is less than 7% and for N = 3 less than 3%, and it is practi-
cally independent of the bandwidth Wy,

Furthermore, Eq. (19) implies that the average error is
obtained directly from the worst-case error, that is

Eave = %Em)nn(le) (20)
Figure 2 shows the average approximation error curves for

Lagrange interpolators of order I, 3, 5, and 7 (i.e., lengths 2, 4,
6, and 8) as a function of the approximation bandwidth wp. Itis

(18)
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seen that the error is small at narrow bandwidths for all filters
(due to their maximally flat characteristic at @ = 0), whereas the
error grows rapidly as the bandwidth is increased. At the band-
width f, = 0.675 J¢/2 (which is interesting for us) the mean
square error is 5.9%, 1.4%, 0.48%, and 0.18% for 1st, 3rd, Sth,
and 7th-order Lagrange interpolators, respectively.

C. Quantization Errors

The quantization errors include input quantization errors and
those introduced in the subsequent processing. For fixed-point
two’s complement arithmetic, both of them can be modeled as
additive white noise that is uniformly distributed in amplitude
over a quantization step g, thus resulting in error variance

ol=q"/12=27%"/12 @1

where (1+b) is the wordlength at the particular quantization
point. To enable comparison with other types of errors, we
define the normalized quantization error as

2 2 ~
o2 12
where A,,,, is the peak signal amplitude corresponding to the
largest representable number. In order to avoid overflow, a scal-
ing of 1 or 2 bits is required so that the ratio K= A,%m / 0',% is
typically of the order 5-10.

Ep= 22)

V. EXAMPLE

Let us analyze the errors of a simplified sampling rate conver-

sion system. We make the following assumptions:

* The approximation bandwidth is @, = 0.675m.

» The bias delay error is 10% of the sampling interval and the

random component has a standard deviation of 10%.

» The main quantization error is input quantization to 5 bits.
With these assumptions, the normalized delay error (17) is

3.2% of the input signal power and the input quantization error

is 1.65% (K = 5). As discussed in Section IV.B, the 3rd-order

Lagrange interpolator has an average error of 1.4%. This is thus

of the same order as the input quantization error (22) and can be

considered sufficiently small as it represents the worst case

(i.e., conversion factor r = 1). When the conversion factor r is

close to 0.5, the approximation bandwidth is reduced and the
error will be considerably smaller (see Fig. 2). Ultimately, it
would be desirable to have both delay and approximation errors
clearly below the input quantization error level. This can, how-
ever, only be done when the system is specified in more detail.

VI. CONCLUSION

An efficient technique for sampling rate conversion for digital
television transmission was proposed. The technique is based
on fractional delay filters that are efficient to implement and can
be controlled with a small number of arithmetic operations per
output sample. The various error sources (delay errors, FD
approximation, and input signal quantization) were analyzed in
detail. Based on realistic system assumptions, it was shown that
a 3rd-order Lagrange interpolator offers sufficient precision. -
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