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ABSTRACT

A generic approach is presented for the
design of uniform-band M-channel M 2 2)
perfect-reconstruction FIR filter banks
employing linear-phase analysis and synthesis
filters. The technique designs on the impulse
responses of the analysis filters directly. The
design problem is formulated as a quadratic
programming problem. The perfect-
reconstruction feature of the filter bank can
either be implicitly enforced through a set of
mathematical relationships among the analysis
filters’ coefficients, or through a set of
constraints in the optimization program. The
former approach results in a filter bank whose
PR (perfect reconstruction) feature’s dependency
on hardware and software is eliminated or, at
least minimized. The criterion for optimality is
“least-squares.” *

L. INTRODUCTION

The design of perfect-reconstruction linear-
phase FIR filter banks has been an active area of
research in recent years. Most works reported,
though, have dealt with the two-channel case.
The work done on the M-channel case is very
limited. Novel lattice structures for M-channel
(M 2 2) perfect-reconstruction linear-phase FIR
filter banks are reported in [1], where good-
quality filters have been obtained. However,
there are four drawbacks when implementing
such lattice-structure filter banks: 1) Due to the
existence of a delay-free path from the input to
the output, the speed of the structure can be very
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slow unless heavy pipelining is employed; 2)
The dynamic range of the optimized lattice
coefficients is very wide; 3) The lattice method
is not generic in two aspects. Firstly, there is no
generic lattice structure; secondly, there is no
generic technique to decompose the polyphase
matrix in order to obtain the lattice structure; 4)
The design technique is not user-friendly; the
burden is on the designer to derive the lattice
structure, which could be a very tedious task.
Independent work in the direction of {1] has also
been reported in [2]. In [3] another technique for
the design of perfect-reconstruction linear-phase
FIR filter banks is proposed. But this technique
does not lead to a uniform-band filter bank. In
addition, due to severe aliasing caused by this
technique, coding gain is slightly lower than in
the conventional filter banks and there could be
an increase in bit allocation. In this paper a new
technique is presented for the design of uniform
band linear-phase perfect-reconstruction FIR
filter banks. The technique is generic, and
therefore results in a very user-friendly design
procedure. Furthermore, it does not suffer from
the drawbacks of the methods in [1] and [3].

. DESIGN METHOD

A generic M-channel FIR filter bank is
shown in Fig. 1. Assuming perfect transmission

channels, the reconstructed signal £(n) is related
to the input signal x(n) by

R 1 M1 M-1 1
X(z)= v Y X(@Wh) Y H W' )F,(2) )

=0 k=0

where M is the number of channels,
W=exp(—j2n/M), and Hi(z) and F,(z) are
the FIR analysis and synthesis filters,
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respectively. In order to cancel the aliasing for
the full spectrum, we set all M-1 terms

involving X(—zW") for k20 in the above

equation to zero. We then treat M-1 of the
synthesis filters as variables, solving them in
terms of the analysis filters and the one
remaining synthesis filter.This remaining
synthesis filter is chosen in terms of the analysis
filters in such a way as to guarantee the synthesis
filters to be FIR.

In order to have a perfect reconstruction
system, it is required that
R@)=T(2)X(z) = az”™™ X (z) where T(z) is the
transfer function of the filter bank, and « is, in
general, a complex constant. A reasonable

requirement on T(z) is that it be constrained to
be symmetric and of odd length. Therefore, only

the center coefficient of T'(z) is non-zero. The
set of sufficient conditions summarized below
for different categories of M guarantees T(z) to
be symmetric. '

a) M=4kpy - An odd number of anti-
symmetric analysis filters and
N, =M/ +1 1<k<M-=1 )
where k;, and /, are positive integers.

b) M=4ky;+1 - An even number of anti-
symmetric analysis filters and (2).

c) M=4ky +2 - An even number of anti-
symmetric analysis filters and (2).

d) M =4ky,+3 - An odd number of anti-
symmetric analysis filters and (2).

The above set of sufficient conditions also
guarantees the synthesis filters to be symmetric
for all M. Furthermore, the imposed requirement
of symmetry on T(z) results in the following
condition on the analysis filters lengths.

ML (ky +DM M odd
2N = \opumt M ©)
k=0 N cven

where ky is a positive integer.

The synthesis filters’ coefficients are real for

M=4ky+1 or M= 4k‘M +2, and pure
imaginary for M =4ky; or M =4ky,+3, in
which case we can absorb the j into the scale

factor ¢ in T()=oz ™. Thus, we can
implement the synthesis filters with real
coefficients for all M.

III. PROBLEM FORMULATION

For a given set of filter lengths and given
stopband and passband cutoff frequencies for the
analysis filters, nonlinear optimization is used to
optimize the analysis filters' coefficients. The
optimality criterion is “least-squares.” The
objective function to be minimized is as follows:

1 M-1 ® 5
f=s-2 {ak[_[w’” (- |Hp?do + )

k=0 Pkl

o, ( j:m |H, |2 do + '[::kz | Hk|2 dw)]}-

Of course, for lowpass and highpass filters the
last two integrals are reduced into one integral.
One can also design some of the filters
separately and then use their coefficients as
known inputs to the final program,; it is just
required that there are enough degrees of
freedom to enforce the PR constraints as well as
to satisfactorily optimize the remaining filters.

The PR feature of the filter bank can either
be implicitly enforced through a set of
mathematical relationships among the analysis
filters’ coefficients, or through a set of
constraints in the optimization program. In the
latter case, considering that all constrained
optimization programs have a tolerance level on
how well the constraint equations are met, the
accuracy of the PR property becomes heavily
software and hardware dependent. Namely, it
significantly depends on the optimization
program and type of arithmetic and the precision
used for number representation. As a result, we
propose, when true PR is crucial, to implicitly
enforce the PR property through a set of
mathematical relationships between the filters’
coefficients, independent of the optimization
program. This method ensures that the
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dependency of the PR property on hardware and
software is eliminated, or at least minimized.

The set of equations that we propose to
enforce mathematically guarantees the PR
feature. We choose as many analysis filters’
coefficients as variables as we have constraints.
These variables are selected such that the
constraint equations form a set of linear
equations in those variables of the form

AX =b#0. We then solve these equations
mathematically (preferably symbolically, not
numerically) for the chosen variables. Since the
equations are independent, and the number of
variables equals the number of equations, the
solution set is unique. The solution set
guarantees the PR property through a set of
implicit mathematical relationships. The solution
set is then used to substitute for the chosen
variables in (4). Subsequently, a nonlinear
unconstrained optimization program is used to
optimize the independent filters’ coefficients.
The objective function to be minimized is given
in (4). We then need to check that for the
optimized coefficients the center coefficient of
the transfer function is nonzero, which is most
likely the case. Alternatively, we can use that as
a constraint in the optimization program. Notice
that in this case there is only one constraint
equation, and it is an extremely loose constraint.
The proposed technique of enforcing the
constraint equations independent of the
optimization program also provides significant
savings in design time. The saving occurs in the
time required for convergence of the
optimization algorithm.

[V. DESIGN EXAMPLE

A four-channel . uniform-band perfect-
reconstruction linear-phase FIR filter bank with

NO =65 and N1=N2=N3=45 was designed.
Hy(2), H,(z), and H;(z) are symmetric and
H,(z), anti-symmetric. The transition bandwidth
is 0.0357z. To enforce the PR feature the first 24
coefficients of Hy(z) were used as variables in
the set of linear equations of the form AX =b.
The Sequential Quadratic Programming (SQP)
method of nonlinear optimization was used to

optimize the remaining analysis filters’
coefficients [7]. The magnitude response plots of

the resulting analysis and synthesis filters are
shown in Fig. 2 and Fig. 3, respectively.

V. CONCLUSION

In this paper we have presented a new
approach to the design of M -channel perfect-
reconstruction linear-phase FIR filter banks. We
have formulated the design problem as a
quadratic programming problem with at most
one constraint. The perfect-reconstruction
feature of the filter bank is ensured implicitly
through a set of mathematical relationships
among the analysis filters’ coefficients,
independent of the optimization algorithm. Our
proposed method results in a very user-friendly
and generic technique of designing uniform-band
M-channel linear-phase PR FIR filter banks.
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Fig. 1. M-channel analysis and synthesis filter bank.
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Fig. 3. Magnitude response plots of the synthesis filters.
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