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ABSTRACT

Generally, the output of a filter bank for a station-
ary input signal is not stationary but cyclostationary.
In this paper, by using cyclostationary spectral anal-
ysis, the spectral correlation density of this output is
derived. Using this result we derive a criterion to con-
struct an optimal 2-band perfect reconstruction filter
bank which minimizes the averaged mean squared re-
construction error when the high pass band signal is
dropped. By adding constrains to the filter coefficients,
the biorthogonal filter bank, the conjugate quadrature
filter bank and the biorthogonal linear phase filter bank
are respectively obtained. Some numerical results are
also presented for optimal biorthogonal and PR linear
phase filter banks which are compared in terms of some
performance measures.

1. INTRODUCTION

Recently there are a great deal of works concerning the
multirate subband filtering method [1] [2] [3] . In this
method, in the analysis part a signal is first band-pass
filtered and then downsampled by decirnator. These
signals are transmitted to the synthesis part. In the
synthesis part these signals are first upsampled by in-
terpolator and then band-pass filtered and added. If
the input is a stationary stochastic signal, then the out-
put is no longer stationary. Actually the output signal
is cyclostationary with the period M where M is the
rate of decimation and interpolation. To fully charac-
terize the output, it is necessary to know the spectral
correlation density (SCD) matrix of the cyclostationary
output signal.

Here we first derive this density matrix by using
Gladyshev’s relation [4] [5] . Then we show the fact
that the output of the alias free filter banks is sta-
tionary for any stationary input and see the perfect
reconstruction (PR) condition from the spectral point
of view. Next the result is used to derive the averaged
mean squared reconstruction error when the high pass
band signal is dropped in the 2-band filter bank . This
is used as a criterion to optimize the low pass filter in
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the analysis part under the PR condition. The criterion
is a generalization of the one by Vandendorpe [6] for
conjugate quadrature filters (CQF) banks. Using this
criterion, some numerical results are also presented for
optimal biorthogonal and linear phase PR filter banks.
In terms of some criteria, the obtained filter banks are
compared.

2. MULTIRATE SYSTEMS
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Figure 1. Filter bank (M = 2).

We review the multirate systems needed in this pa-
per using the notations in [1]. Let h;(n) and g;(n) be
the coefficients of the filters H;(z) and Gi(z) in Fig. 1.
We can write the analysis filters

Hy-i(2))T

)T @)

H(z) = ( Ho(z) Hi(2)
= Eh(zM) ( 1zt
with Type 1 polyphase matrix defined by

o o)

(Br(2)ks = Z he(Mn+1)z7" (3)

n=-o0

where ( )i, is the (k,!) element of the matrix.
The alias component (AC) matrix of H(z) are de-
fined by

(HAC(Z))k,l = H[(ZWk), W — e_ng* (4)
whose relation to Ry(z) is given by
HY((2) = Ep(zM)A(z)W! (5)

where the dagger denotes the complex conjugate trans-
pose and W is the DFT matrix; (W) = W*! and

A(z) = diag(1,271,..., 27 M+, (6)
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Define the AC matrix and the polyphase matrix of syn-
thesis filters by the same way, denoted by G 4¢(z) and
E (z) respectively.

It is shown in [1] that the system in Fig. 1is equiva-
lent to the system in Fig. 2 by the polyphase matrices.
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Figure 2. Filter bank using polyphase matrices.

3. CYCLOSTATIONARY PROCESSES

A process y(n) with zero mean is said to be cyclosta-
tionary with period M if its covariance satisfies

Efy(m)y!(n)] = R(m,n) = R(m + M,n + M). (7)

So for fixed u, R(n + u,n) is a periodic sequence in n
with period M. Thus we have the following discrete
Fourier expansion

W= Rt u,mwt (8)
cr(u) = 37 n+u,n .

n=0

It is stated by Gladyshev [4] that under certain condi-
tions we can write
2w

cr(u) = Fr(w)e?““dw. (9)

0

These Fj(w) are called the spectral correlation density

(SCD) of a cyclostationary signal. It should be noted

that if y(n) is stationary, then Fo(w) is the conventional

spectral density and Fy(w) =0fork=1,...,M - 1.
Define an M-channel process w(n) by

wi(n) =y(Mn+1d), i=0,...,M -1, (10)

where y(n) is cyclostationary with period M. It is eas-
ily shown that the multivariate process

w(n) = (wo(n), w1 (n),..., wp_1(n))¥ (11)
is jointly stationary. Conversely, if w(n) in (11) is
stationary, y(n) constructed by (10) is cyclostationary
with period M. By using W and A(z) in (6), the re-

lation between Fy(w) (k = 0,1,...,M — 1) and the
spectral density matrix S(w) of w(n) is given by

Fu) = 2 W A()S(Mw) Al )W (12)
where the SCD matrix F(w) is defined by

(F(w));,k = Fi—k(w + i27l’/M), |w| < 7r/M. (13)

This relation was first stated in Gladyshev [4] and was
presented in this form in [5] . It should be noted that,
by using this F(w), the averaged variance of the cyclo-
statlonary process is expressed as

27 /M

Fo(w)dw = / teF (w)dw.

-x/M

1 M-1
7 ;R(n,n)= A

(14)
4. OUTPUT OF FILTER BANKS

Now we derive the SCD matrix of the output Z(n) of
the M-band filter bank in Fig. 2 when the input is
stationary with zero mean and the covariance R,(n)
and the spectral density S,(w).

Define M-channel processes u(n), v(n) and w(n)

(u(n))i = ui(n) = 2(Mn - 1) (15)

(v(n)); = vi(n) (16)

(w(n)); = w;(n) = T(Mn + i), (17
fori=0,...,M — 1, respectively.

Since x(n) is stationary, u(n) is M-channel station-
ary. After some computations, the relation between
Sz(w) and S,(w) is given by

Su(w) = -]é!—A(ejﬁ)WS,(w)WTA(e‘jﬁ) (18)
with the diagonal spectral matrix

(8z(w))ii = Sz((w + 2m3) /M). (19)

Since v(n) is filtered by E(2), from (5) and (18), its
spectral density matrix is given by .
1

S,(w) = %

H'\ (e77%)S (w)H ac(e/#). (20)

In the synthesis filter bank, since v(n) is filtered by
E;(z) to produce the output w(n), its spectral density
matrix is given by

Su(w) = Eg ()8, (w)Ey(e™7). (21)

Since w(n) is M-channel stationary, from the Glady-
shev’s relation (12), (20) and (21), Z(n) is cyclostation-
ary with period M whose SCD matrix is given by

F(w) =T e )8 (Mw)T(e %) (22)

where
T(:) = 5 Hac(2)Ghe(:). (23)
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Now we show the following theorem.
Theorem
If a filter bank is alias free, then its. output for any
stationary input is stationary.
Proof
A filter bank is said to be alias free iff the matrix

P(z) = Ry(2)En(2) (24)

is pseudo-circulant where Ry(z) is Type 2 polyphase
matrix of synthesis filters [1]. Substituting (24) into
(23), after some computations, it can be shown that
T(z) is diagonal. Since §,(Mw) is diagonal, from (22),
F(w) is diagonal so that Z(n) is stationary O

Denote the Oth diagonal element of T'(z) as T'(z).
Then it can be shown that, from (13) and (22),

Fo(w) = |T(7*))2Se(w), |w] < 7. (25)

This shows that the alias free filter bank characterized
by (24) is equivalent to a scalar linear time invariant
system. Moreover, a filter bank is said to be a PR filter
bank for a deterministic signal iff

T(z)=cz™™ (26)

for some positive integer no and some constant ¢ # 0
[1]. From our cyclic spectral analysis, in the stochastic
signal case, the output is stationary and satisfies

Fy(w) = 28, (w) (27)
as it should be.
5. OPTIMIZATION OF FILTER BANKS
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Figure 3. A system whose high pass band is dropped.

We assume that high pass bands from K to M — 1
are dropped and denote the output of the filter bank
as y(n). Consider Fig. 3 (M = 2, K = 1) and define
an M-channel process ®(n) as

(@(n))i = Wi(n) = y(Mn + i) (28)

The difference e(n) between w(n) and w(n) is given
by
e(n) = w(n) - B(n) = Eg (@)'v(n)  (29)

where K
I' = diag(0,...,0,1,...,1) (30)
and ¢! is the delay operator ¢7'z(n) = z(n — 1).

Note that the reconstruction error

e(n) = Z(n) — y(n) (31)
satisfies (e(n)); = e(Mn+:). From (20) and the Glady-
shev’s relation, the SCD matrix of e(n) is given by

Fe(w) = (T'(e77*))'8:(Mw)T'(e77) (32)
for |w| < 7/M where
1

T'(z) = ﬁHAc(z)I'Gic(Z)- (33)

When M = 2 and the high pass band signal is
dropped, from (14) and (32), the averaged variance of
the reconstruction error reduces to

2 _ 1 jwy|2 j(whm)y (2
— Jw Jlw+m N
=1 [ (1 + jGierrm)p)

| Hy (e7)|25, (w)dw. (34)

Therefore by minimizing the above equation under the

PR condition, optimal PR filter banks can be obtained.
Now let us consider the PR filter bank. Let Hy(z)

and Hj(z) be causal FIR with odd order N and put

G()(Z) = Hl(—z), GI(Z) = —Ho(—z). (35)
Then, the PR condition (26) reduces to

1 _
T(z) = §(H1(Z)G1(2) = Hi(-2)G1(=z2)) = cz™™.
(36)
This filter bank is also called biorthogonal [3].

The filter bank which satisfies (35), (36) and

hi(n) = (~1)he(N =n),n =0,...,N  (37)

are said to be CQF bank, PR-QMF or orthogonal. In
this case, ng = N and the criterion (34) reduces to

af = %/ |H1(€jw)|25z(w)dw’ (38)
0

which is originally considered in [6].

In some application it is desirable to use a PR filter
bank whose filters have linear phase, abbreviated PR-
LPF in this paper. It is shown in [3] that in addition
to (35) and (36) the coefficients must satisfy
ho(n) = ho(N —n), hi(n) = =hy(N=n),n=0,...,N.

(39)
Using the polyphase representation, from (39), we have
Hi(z) = Eio(2*) + (-1)'Eio(272)2z7",i = 0,1 (40)

In this case, ng = N, the PR condition and the criterion
(34) reduce to

Eoo(Z)Elo(Z_l) + Eoo(z_l)Elo(Z) = 1, (41)

2%
o2 = / |Eoo(72%) Hy (/)P S,s (w)dw  (42)
0

respectively.
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" NORMALIZED FREQUENCY

Figure 4. Frequency responses Ho(e’*) and H;(e/¥)
of an 8-tap optimal biorthogonal bank.

N=T7 CQF | PR-LPF | Biorthogonal
(%) 96.497 | 96.419 96.501
B (1=2) ]0.0389 | 0.0173 0.0373
Gspc (dB) | 4.34 4.82 4.41

Table 1. Properties of the optimal PR filter banks

6. RESULTS

For R.(n) = 0.97I"l and N = 7, the frequency re-
sponses Hy(z) and H;(z) of the obtained optimal bi-
orthogonal bank (ng = N) and PR-LPF are shown in
Fig. 4 and Fig. 5, respectively. We use the coeffi-
cients of the optimal CQF bank as the initial values for
nonlinear optimization, so it may be suboptimal.

A measure of our criterion is defined by

n=1-0l/0} (43)

which shows the efficiency of the compression of the
input signal.

In using the PR filter bank, it is often the case that
the subband signals have small correlations with each
other. A measure of this is given by

M-1
=00 3 IR(ixP)/e2  (44)

T i,k=0:i#k

where R,(T) is the covariance of v(n). The 2-band
CQF filter bank which minimizes the above measure is
considered in [7].

Usually, between analysis bank and synthesis bank,
there are quantizing operations. The effect of the re-
construction error due to the quantization is measured
by the coding gain given in [8]

&
45
lemnE

Table 1 shows the above measures. In terms of 5, the

GsBc =
M-1_»o
(Hi=0 Uvi

NOCRMALIZED FREQUENCY

Figure 5. Frequency responses Ho(ej"? and Hy(e?*)
an 8-tap optimal PR linear phase filters bank.

biorthogonal filter bank is best as it should be and PR-
LPF is worst. It is interesting that in terms of 8 and
Gsc, PR-LPF is best. In the CQF, it can be shown
that the optimal bank in terms of 7 is equal to the
optimal bank in terms of Ggpc.

7. CONCLUSION

In this paper, the spectral correlation density of the
output of filter banks is derived. A criterion is also de-
rived to construct optimal 2-band perfect reconstruc-
tion filter banks which minimize the averaged mean
squared reconstruction error when the high pass band
signal is dropped.
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