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ABSTRACT

The discrete-time envelope constrained (EC) filtering prob-
lem can be formulated as a quadratic programming (QP)
problem with linear inequality constraints. In this paper, the
QP problem is approximated by an unconstrained minimiza-
tion problem with two parameters. These parameters can be
selected so that given an acceptable deviation from the
norm of the optimal EC filter, the solution to the uncon-
strained problem satisfies both the deviation and envelope
constraints. Newton’s method with line search is applied to
solve the unconstrained problem iteratively.

1. INTRODUCTION

Envelope constrained (EC) filter design is concerned with
determining the finite impulse response (FIR) of a filter so
that its noiseless response to a specified input signal lies
within a given envelope (see figure 1), while minimizing the
effect of input noise [1]. In a variety of signal processing
fields such as communication channel equalization [1], ra-
dar and sonar detection [2], robust antenna and filter design
[3], seismology [4], EC filters are more directly relevant than
least square filters.
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Figure 1. Output mask and noiseless output.

In [5], the EC filtering problem has been formulated as a
quadratic programing (QP) problem with linear inequality
constraints. Sequential quadratic programming via active set
strategy is a popular tool for solving QP problems. However,
implementation-wise, this is not suitable for adaptive filters.
In [6], the primal-dual algorithm is used to solve the EC fil-
tering problem adaptively. Numerical results have shown
that the algorithm converges, though at a rather slow rate. In
[7] contraction mappings and appropriate projections are
used to develope constrained adaptive filtering algorithms,
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however this is only applicable where the filters are con-
strained to a bounded hypercube.

In this note, a new class of iterative algorithms for solving
the EC filtering problem is introduced. These algorithms
have better convergence characteristics which can be pre-
dicted analytically. The EC filtering problem is approximat-
ed by an unconstrained optimization problem with two
undetermined parameters. The Newton-Ralphson (NR)
method can then be applied to solve the unconstrained prob-
lem.

It is shown that the error between the solution to the approx-
imate problem and the optimal filter can be made vanishing-
ly small. A quadratic rate of convergence for a certain type
of algorithm is established when the NR method is applied
to solve the unconstrained problem. These results are not re-
stricted to the EC filtering problem but also apply to other
disciplines such as robust pole placement [8] which can be
posed as a QP problem with linear inequality constraints.
This is the first step towards developing adaptive algorithms
for EC filters. The study of the behavior of the new iterative
algorithms with noisy measurements is under way.

2. THE EC FILTERING PROBLEM

Letu = [ul,...,un]re R" be the finite impulse response of
a time ipvariant FIR filter. Then the cutput of the filter due to
a finite sugport input signal s = [sl,...,sm]reR’" is
v =Su€R ,where N =m+n-1 and § is the Nxn con-
volution matrix, given by

r.s'l 0 ... 0-

5 :

S = s, 0 0
0 s, 5,

_0 ... 0 Smf

It is required that the noiseless output y lies within the up-
per and lower boundaries e+, e € R of output mask, ie.
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e <Su<e* (see figure 1). Let A = [7, _sT]7 € R2Vxn and
b=[e+7,¢T]T€ R?N. Then the envelope constraints, be-
comes Au<b. The envelope constrained filter problem is
posed as problem (P), given as follows

minfull’ subjectto Au-b<0.
This problem, has a unique solution, u™, if the feasible set,
um {u€ R":e"<Su<e*}, is not empty. The topological
properties of U are given in the following Lemma,
Lemma 2.1. The set u of feasible filters is convex and com-
pact. Moreover U is contained in a closed ball centred at the
origin and radius [rl/o(S) , where re RY is a vector with
components defined by r; = max {[¢;, |&;*|} and o(S)
denotes the minimum singular value of the convolution
matrix S . (See [9] for proof).

To eliminate the trivial solution, it is assumed that there ex-
ists at least one je {1,..,N} such that the product
e]*'ej >0, where ¢+ ¢~ are, respectively, the j compo-
nent of the upper and lower boundaries.

3. THE APPROXIMATE PROBLEM.

Suppose g, is a continuous function such that g (x) = 0
forall x<-v and g, (x) is strictly increasing for all x> -v.

Let ; () -aTu b;, where a” denote the /" row of A and
let G () =g, (¢ (u)) . Then for each v,y>0, an aug-
mented cost funcuon is defined as follows

fo, (@) el sy Y G
j=1

The function g, , called a penalty allocator, determines the
analytical properties of the augmented cost f, _ as demon-
strated by the following theorem (see [9] for proof)
Theorem 3.1.
(i) fu » is continuous and strictly convex.
(ii) If g, is once continuously differentiable, then f, >y
once continuously differentiable and its gradient is

2N
Vi, ,(8) =2u+vY &, (9;(u))a;.
j=1
(iii) If g, is twice continuously differentiable, then foy
twice continuously differentiable and its Hessian is
N
VY, () =20+ Y &', (8; (W) ag; .
j=1
Hence the unconstrained minimization problem @, ) with
v, v>0, defined by,

min », 7(u)
has a unique solution, which is denoted by u The use

of (P, ,) to approximate (P) is justified by they following
theorem (see [9] for proof).

Theorem 3.2. If 0<v<?d and v>|u,)*/s,(0) for some
ue‘u.u-{uG (u)-O}-l 2N} . Then u L€ U,
moreover, for each O<eg 2||11| where b-An>0, we have

. b-An) .
0<1)S€ mj:léi;lrf( u)}=> OSIU:.JIZ‘Hu*IZSe.

Thus for values of v such that « is non-empty by choos-
ing a value of y such that y>||uu| /8,(0) for some
u € u,,the above theorem asserts that the approximate op-
tlmal filter u , satisfies the envelope constraints. More-
over, for any glven e, the parameter v can be chosen
(without usmg any information on u oy and u*) so that the
imy pulse power deviation (IRPD) defined as
(ll ’(lj —ﬂu , is less than e . From this, it can be easily de-

that the error "u -u I vanishes as v tends to zero.
These results can be easlly extended to a more general qua-
dratic cost with only minor modifications.

4, ITERATIVE ALGORITHMS

Having selected v and y, the NR method can be applied to
determme the solution iteratively. The filter coefficients u,
at the &" iteration can be updated by virtue of Theorem 3.1
and the following iterative equations.

oy = uk—tka_lva,y(uk) JHy = V¥, ()
Theorem 4.1. Suppose that g, is twice continuously differ-
entiable for each v>0 with |g" (x)| <h(v) ,Vx€R. Then
any initial estimate uywill converge to the solution u v of
problem (P, , under the NR algorithm with constant step
sizet, =t if
-2
L+ nyh (o) Jsl>
The proof can be found in [9].

Considerably faster convergence can be achieved by using
line search to determine a suitable step size. An effective
form of line search involves the Goldstein condition [10],
[11]:

Foryey) =y () <a,¥f, (u)7d, a€ (0,05).
and the Wolfe-Powell condition [12]

Vo +1d) T4, 2BYF, () dyBe (a1)

One such implementation is coded as follows

line_search
ﬂpp = INF; ¢,, = 0; t =1; ADMISSIBLE = FALSE;
while ADMISSIBLE == FALSE
if GOLDSTEIN == TRUE,
if WOLFE POWELL == TRUE,
ADMISSIBLE = TRUE;

else

O<t<

tlow =t;
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if tupp = Inf, ¢ = Increase(t!);
else ¢ = Refine(!, 1, ,1,,,)i
end
end
else
fupp = 17
if low == 0,t = Decrease(t),

else t = Refine(f,t
end
end
end

low upp )i

Theorem 4.2. Suppose that g is twice continuously differ-
entiable for each v>0 with |g"“ (x)| Sh(v). If g",(x) is
Lipschitz  continuous, i.e. Ig"n (x) -g", (y){ SLix-¥,
Vx,y€ R, and the step size t, is chosen by the above line
search procedure, then, any initial estimate u, will converge
to the solution u;  of problem (P, ) at a quadratic rate,
under the NR algorithm. (see [9] for proof)

5. A NUMERICAL EXAMPLE
As an example, consider the compression of a rectangular
pulse which has applications, for instance, in a high resolu-
tion radar system For 2 rectangular input pulse represented
by s=[1,...,1] Te R® , using a filter with n = 21 coeffi-
cients and an output mask with an allowable sidelobe level
of £0.25 and mainlobe peak of 1 £0.15, i.e.

=[ 025..025 ,115 0.25,.

14 15
,-0.25,0.85, -0.25, .

14 } 15

The coefficients of the ‘exact’ optimal EC filter 4™ (ob-
tained by QP from the MATLAB optimization toolbox) and
the response of the optimal filter due to the rectangular pulse
are shown in Figure 2.

5025 ] Te R

e = [-025,... ..-02517€ R®
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Figure 2. Optimal EC filter coefficients and output

Also examined in this example is how well the uncon-
strained problems approximate the EC filtering problem. To
do this, it is assumed that the numerical errors associated
with the exact solutions of each problems are negligible in
comparison to the approximation errors.

There is a @ such that mm} Lan(d -Am); = 0.0667 , and
IIull‘ = 0.6386 . Hence, in order to have an 1mpulse response
power deviation (IRPD) of less than 4 x 10~ from the opt-
mal EC filter, it follows from Theorem 3.2 that the accuracy
parameter v is required to be less than 2.088x 10™. For
convenience, let v = 2x 107, the penalty parameters are
selected by using Theorem 3.2 and the bound on « suggest-
ed in Lemma 2.1. The NR method with the given line search
is used to solve the resulting unconstrained problem. The it-
eration process starts with the origin as an initial guess and
stops when the gradient is less than 10™'*. Three penalty al-
locators are used for comparison in this example.

The first of these penalty allocators, given by (1), generates
the approximate problem used in [13] which was solved by
the SD and NR methods with constant step size.

0, x<-v
g, (x) = {(x+u)2/40, -v<x<$V 1¢Y)
X, 20

Note that (1) has two discontinuities in the second derivative
leading to difficulties in convergence rate analysis. The IRP
is plotted against the number of function evaluations or iter-
ations in Figure 3.
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Figure 3. Convergence characteristic of penalty allocator (1)
The second penalty allocator is given by (2).

0, x<-v
gy (%) = { 2 @
(x+v)/4v, -v<x
This penalty allocator has a discontinuity in the second de-
rivative and thus suffers from the same analytical drawback
as penalty allocator (1), but displays, in practice, a phenom-
enal improvement in performance (see figure 4).
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Figure 4. Convergence characteristic of penalty allocator (2)
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The third penalty allocator, given by (3), is constructed to
emulate penalty allocator (2) while eliminating the disconti-
nuity in the second derivative.

0, x<-v

—Bcos(ﬂ—x)+-(-‘”'—n), -0<x<0
gu(x) = 1 2v 2 3)
9
et (1))
-3-54-2-{»0(2 =) x20

From Theorem 4.2, a quadratic rate of convergence is ex-
pected when the NR method with the given line search is ap-
plied to determine the solution of the resulting unconstrained
problem. The behavior of (3) is shown in Figure 5.
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Figure 5. Convergence characteristic of penalty allocator (3)
The simulation resuits are tabulated in the following table
Table 1: Penalty parameters

V=2x10°  |penalty allocator (1){penaty aliocator (2)|penalty allocator (3)
%ﬁmmoﬁ s4037IC |
IRPD 4.8104x10° 4.8104x10° 4.8072x10°°
reo/fu*]®> | 1.3000¢10% 1.3080x10* 1.3082x10°4
no. {. evaluations 482 6 19
no. SD. evaluaﬁonal 85 5 18

From Table 1 and Figures 3, 4 and 5 which plot the augment-
ed cost function and the impulse response power of the filter
against the number of function evaluations, the convergence
behavior for each of the penalty allocators can be compared.
For penalty allocators (2) and (3), only a few iterations are
required, while penalty allocator (1) takes conmsiderably
many more iterations and line search calculations. In all, this
is an improvement over the primal-dual algorithm which
takes several thousand iterations (see [13]). Table 1 also
shows that the IRPD of the filters yielded by each of the pen-
alty allocators are about 12% of the prescribed tolerance of
4x107*. This suggests that the IRPD bound of Theorem 3.2
is very conservative.

6. CONCLUSIONS

The error estimate e, although conservative, is still very use-
ful as guide lines for determining the parameters v and y of
the approximate problem. Considerably smaller values for
the penalty parameter y may be used as the bound on the
feasible set suggested by Lemma 2.1 is quite loose. The sim-

ulation results demonstrated that the new algarithm based on
penalty allocator (3) exhibit the convergence characteristics
predicted by Theorem 4.2. The unexpected speedy conver-
gence for penalty allocator (2) does not render it superior to
(3) as there are examples where it is slower. In general. pen-
alty allocator (3) performs better than the other two.
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