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ABSTRACT

Using Laguerre networks in discrete-time (DT) do-
main has already been addressed by the author [1]. The
main contribution of this paper is to use the Laguerre
networks in frequency domain, and to design the digital
filters based on the specified frequency response. This
filter design yields appropriate linear phase, with lower
ripples in stopband and passband compared to the con-
ventional FIR filters. Both, analytical and numerical
approaches for Laguerre digital filter design will be in-
troduced in details and the results will be shown through
some examples. The procedure is based on minimizing
‘the mean-square-error (MSE) between the frequency re-
sponse of the desired filter and its corresponding La-
guerre network frequency response.

1. INTRODUCTION

Discrete-time Laguerre functions make a complete or-
thogonal set with the following Z-transform [2]

z—l —-b k
Li(z,8)=v1- 2 W

where b is an adjustable parameter. Thus, any linear
discrete-time invariant system with specified frequency
response can be represented as

A(z) = %—; =20 La(2.0) (@)

o<1 (1)

in which X(z) and Y(z) are input and output Z-
transforms of system respectively, and cg(b)’s are known
as Laguerre coefficients. From (1) and (2), the system
Laguerre equivalent network is realized, and it is shown
in Fig. 1. Consequently, we obtain

Y(z)=)_ e Vil(2) (3)
k=0

where

Vi(2)

Li(z,b) X(2) k=0,1,...

=1 _pk
\/1-62(1(_T%)WX(Z) 4)
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from (4) and Fig. 1., it is obvious that the first stage
is a stmple low-pass filter and the remaining stages are
tdentical all-pass filters. In physical applications, the
frequency response of the system can be approximated
by L+1 Laguerre stages as

L
H(z) =) ck(b) Li(z,b) (5)
k=0

where we obtain the optimum value of b by minimizing
MSE between H(z) and H(z) in frequency domain.

2. ANALYTICAL METHOD

The orthogonality property of a real set of basis func-
tions such as {Lx(e’“,b)} in frequency domain is

1 Li(e7%,b) Ly (€7, ) dw =06y (6)
27|' 2

Using this property, it can be shown that the MSE in
frequency domain is

() = 5 [ 1)~ HE) do ()

L o de - S e ()
= 5 [ AP 3

To minimize (b) with respect to b, we set its derivative
with respect to b to zero, to cbtain

L

> e (b) a‘%ck(b) =0 (8)

k=0

In general for any H(z) or H(w), it can be shown that
(8) is equivalent to (see Appendix A)

L
d L+1
> ex(b) Zet(0) = Ter(b) eL(b) =0
k=0

[bl<1

(9)
Thus, b4p; is one of the roots of ¢£(b) =0 or ¢z 41(b)=0.
Because of multimodality nature of £(b), we have several
roots in the interval [-1,1]. For extracting these roots,
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the most reliable method is bisection method. bop, is the
one that gives enmin(b). Using the orthogonality property
of Laguerre functions and (1), it is shown that [1]

cx(b) (10)

o }{ H(z) Le(271,0) 271 dz

= l—be() - ))k+1

2"V dz

where C is the unit circle. By inserting H(2) in (10),
we can obtain c;’s for any specified filter.

For instance, the desired frequency response for linear
phase low-pass filter (LPF) with time delay 7, by using
the change of variable z=¢/* is as

Hpp(z) = { S—T

e IWe < z < efWe
otherwise on unit circle

(11)

By introducing the appropriate frequency responses for
high-pass (HP), band-pass (BP) and band-reject (BR)
filters and substituting the following binomial expan-
sions

(1_bz)-(k+1)=z( k—;—i )bizi

1
fl< s (12)
i=0

5 (2) o

m=0

(z —b)F = (13)

in integrand of equation (10), we obtain

Vl-_szEs(n) )"*P( kp§14)

p=0n=p
( k:ﬁ;p ) BEHn=2 =\ /T b2 P (b)

where 7 is the time delay and Px(b) is a polynomial of
degree k + 27, and

Ck(b)

7)]=sin[w;(n-7}]

__1ym sinfwa(n—
s(n) = (=1) n(n—7) nFT
A4 (-1m e n=rt
(15)

m=A=0 for LPF, HPF, BPF, and m=A=1 for BRF.
wy is lower edge cutoff frequency (zero for LPF) and w,
is upper edge cutoff frequency (# for HPF). Now, we
illustrate this method by an example.

Ezample 1.

We want to design a digital Laguerre filter which real-
izes an ideal linear phase LPF with w,=7/4 and 7=16.
Using a Laguerre network with 20 stages (L =19), we use
(14) and (15), and clearly find the corresponding Py (b)’s
for c19(b) =0 and cq0(b) =0 that are polynomials of de-
gree 51 and 52, respectively. Using bisection method

with (14) and (15), it is found that b,5; = 0.40651 re-
sults in (Ziio ¢%)max =0.243, which is very close to the
ideal value (1/27) [, |H(w)|>dw =0.25. From (7), we
see that emin(b) =0.007. The corresponding magnitude
and phase responses of Laguerre LPF in comparision
with FIR filter (which is designed by rectangular win-
dow method [3]) are shown in Fig. 2. It is seen that
the Laguerre response has appropriate linear phase and
lower ripple in stopband  compared to FIR filter re-
sponse.

3. NUMERICAL METHOD

If £(n) is a sequence of length N and X(K), X(w)
and X(z) are its corresponding discrete fourier trans-
form (DFT), fourier transform (FT) and Z-transform
(ZT), respectively, it is known that [4]

= X(Z)Iz=ej“’K (16)

where wg = K2x/N and K=0,1,---,N —=1. I h(n)
i1s the unit-sample response of a linear time-invariant
system with time span length of N, for z(n)=h(N —n)
as input in (4), it is shown [1,2] that ¢ =v(N). From
(4), (16) and Z{z(n)}=Z{h(N —n)}=2"NH(z71), for
an L + 1 stages Laguerre network, we can write

X(K) = X(wk)

Vk(K) = Vk(z)lzzej“‘K:[Lk(z7b)X(z)]|z=ei“K
= |H(wg)| e I8 Li(e?“%,b) (17)
where k=0,1,---,L , K=0,1,---,N—1; IfI(wK)|,

and 7 are the magnitude and phase responses of ideal
filter H(w) at wk, respectively. From (1), after some
algebraic manipulations we obtain

1 b2
14562 - 2b coswg

exp{j[K7/N — (1 + 2k)0k]}

Le(ehx) =

(18)

where fx =arctan [(1 + b) tan(K#/N)/(1 - b)] and wx
is as in (16). Inserting (18) in (17), results in

1—52 (19)
1452 —2b coswg

(nx + (1 + 2k)8x)]}

Vi(K) = |H(wk)|
exp{j[K7/N —
From the identity of inverse discrete fourier transform

(IDFT), we can write

ck(b)zvk(N):IDFT{Vk(K)}|n=o:

1 N-1
= > Vi(K)
NK:O

(20)
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Considering the above results, the procedure for design-
ing the L+1 stages Laguerre filter is as follows:
1) Using ezhaustive search method, increase b gradu-
ally from -1 to +1.

i1) Using (19) and (20), to compute corresponding
ck(b)’s for each b, and obtain the frequency respo-
nse as: H(w)=3r_, cx(b) Li(e?®,b).

iil) For each set of {cx} in step (ii), compute the MSE,
E(b)=(Txoo [H(wk) — Hwk)®)/N.

iv) Obtaining the optimum Laguerre filter parameters
bopt and {c }opt, whenever E(b) in step (iii) is mi-
nimum.

Now, we repeat example 1, by this method.

Ezample 2

We design a linear phase LPF with w, = n/4 and
7=16. To hold the linearity of phase, we take N =33
samples from H(w) in [0, 27]. Thus, we have

- 1 0<K<4 , 29<K<32
and
_J -K¥%& 0<K<16
"K"{ —(K —33)3%& 17<K <32 (22)

Applying the numerical procedure, it yields a Laguerre
network with 20 stages (L = 19) with bop; = 0.32 and
Epin=0.0026. The corresponding magnitude and phase
responses of the Laguerre LPF in comparision to FIR
filter (which is designed by frequency sampling tech-
nique [3]) are shown in Fig. 3. It is seen that the re-
sponse of the Laguerre filter has linear phase in pass-
band, and lower ripple in stopband compared to FIR
filter response.

4. FREQUENCY TRANSFORMATION

We assume that for linear phase LPF with w,rp and
7, the L+1 stages Laguerre network realization has op-
timum parameters as bz,p: and {ckrp}op:. Now, we
want to design a high-pass Laguerre digital filter with
the same L and 7, but with cutoff frequency

WeHP = T — WeLP (23)
From (15) and (23), it can be readily seen that s(n)gp =
(=1)*~"s(n)Lp. Now, suppose that by and by = —br
are corresponding Laguerre parameters for LP and HP
filters, respectively. Thus, from (14), after some alge-
braic manipulations we obtain

cerp(be) = (=17 crrp(br) (24)

Consequently, if br,p: is optimum Laguerre parameter
for LPF, then bgop: = —brop: is the corresponding opti-
mum for HPF, provided that (23) is satisfied. Also, (24)
shows that, in this case {ckgp }opt = (=1)¥+" {ckLp}opt-

5. CONCLUSIONS

Most of the FIR filter design methods have high rip-
ples in the passband and stopband and a large number
of delay lines (z7') in their realization. To improve
this problem, more complicated approches have already
been introduced in literature [3]. The simple algorithm
introduced in this paper shows thatthe Laguerre digital
filters have appropriate linear phase , lower ripples in
passband and stopband and lower stages compared to
FIR filters.

APPENDIX A

To show that

L

> cx(b) 5

k=0

+

Ck(b) T L0 era() (A1)

we use the induction method. We show that (A.1) is
true for L = 0 (equivalent to one stage Laguerre net-
work). Then, we assume that (A.1) is true for L terms,
and demonstrate that it is true for L+1 terms.

But, first we show the validity of the following identity

k
Lk+1(2‘_1,b) = k+1Lk_1(Z_1,b) (A2)
1-2d _  _,
S S

Recalling (1), constracting appropriate L;(z~1,b)’s and
substituting them in both sides of (A.2), it can be read-
ily seen that (A.2) is valid.

Using (10) and (A.2), we obtain

-b d

k
ck4+1(b) = 1% 1(b) + E 11 4 cx(d)  (A3)
From (1), it can be easily shown that
d -1
ELO( 0) = 73 (=7, b) (A4)

Thus, analogous to (A.3), from (10) and (A .4), we can
easily show the validity of (A.1) for L=0.
Now, we suppose that the following identity is true

L-1

3 k) k) = 1o

k=0

cr—1(b)cr(b) (A.5)
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and then we will show that (A.1) is true. We expand REFERENCES

the left hand side of (A.1) as
[1 ] M. A. Masnadi-Shirazi and N. Ahmed, ”Optimum

L-1 . .
d Laguerre networks for a class of discrete-time sys-
zck(b) ck(b) Z ck(b) ck(b)+cL(b) cL(b)(A 6) tems”, IEEE Trans. on Signal Processing, vol.39,
k=0 No.9, Sept. 1991.
Substituting (A.5) in (A.6), leads to

[2] C. Ruanol d, ”Laguerre functions and the La-

L L +1 guerre network-their properties and digital simu-
Z c"(b) ack (b) = 1—02 cr(b) (A.T) lation,” Massachusetts Institute of Technology Lin-
k=0 coln Labratory, Technical Note 1966-28, May 1966.

L —b% d
[L +1 cr-1(b )+ +1db cr(b )] [3 ]1J. R. Johnson, Introduction to Digital Signal Pro-

cessing. Prentice-Hall, 1989
Now if we set k=L in (A.3), we see that the term in

bracket in (A.7) is cz+1(b). Thus, (A.1) is verified. [4 ] N. Ahmed and T. Natarajan, Discrete-Time Signals
and Systems. Reston Publishing Comp., Inc., 1983.
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Fig. 1. Discrete-time Laguerre network.
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Fig. 2. FIR and Laguerre(dashed line) LPF Fig. 3. FIR and Laguerre(dashed line) LPF

(a)magnitude(db) and (b)phase(rad) (a)magnitude(db) and (b)phase(rad)

response for analytical method. response for numerical method.
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