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ABSTRACT

A design of 2-D complex FIR filters is proposed by

minimizing the pth power norm used to measure the deviation of

the FIR filter response from a desired filter response. The
solution of this problem cannot be obtained in closed form except
for p=2; for arbitrary p>2 we present an approach which treats
the problem from a complex variable point of view. An iterative
scheme is described based on the complex Newton method to
find the solution. It has the feature that, starting with p=2, the
value of p is increased after each iteration. Because the objective
function is convex any local extremum is the global minimum.
Convergence can be aftained after a moderate number of
iterations. A characterization theorem for factorization of 2-D
FIR filters in terms of 1-D filters is derived. This has strong
implications for large order 2-D filter design. Two filter design
examples are included.

1. INTRODUCTION

Complex coefficients 1-D FIR filters have recently
been developed, [1], [2], for radar/sonar clutter supression and
other applications where nonsymmetrical filter response is
desired. Complex coefficient FIR 1-D filter design has been
treated by a few authors; more notably Preuss derived the theory
and algorithm for the Min-Max criterion, [1] and created a
Remez-type algorithm. Jaffer in [2], uses a least squares to
obtain the complex coefficients of a FIR filter in closed form. A
characterization of affine phase complex FIR filters is also given

in [2]. Using the least pth power filter design is not new. Fahmy

and Lampropoulos, [3], proposed a modified pth power criterion
to design real 2-D filters however their Newton iterates were not
computed in closed form nor any comments were made relative
to the behaviour of the solution for large values of p. More
recently the Iterative Reweighted Least Squares (IRLS)

technique has been applied, [4], [5], to compute the least pth
power filter design for real FIR filters. This approach is
essentially a rearrangement of the Newton method and it is
unusual in the sense that the power p is gradually increased in the
successive iterations. Alkhairy et al, [6], developed an efficient
algorithm for computing real 1-D FIR filters to approximate
complex valued filter response in the minmax sense.

The emphasis of this paper is complex 2-D FIR filter design for
2<p and derivation of some of their characteristic properties. Our

aim is the efficient computation of the least pth power and use it

0-7803-2431-5/95 $4.00 © 1995 |[EEE

as an approximation to the minmax design for which there is no
characterization in 2D. We derive structure results as well as
efficient algorithms for the filter formation. We use the complex

Newton method, [7] to minimize the p"h power norm of the

difference between the constructed and desired filter response.
We treat the problem entirely from a complex variables point of
view and do not decompose the filter coefficients into its real and
imaginary components. This we believe adds elegance and
compactness to our solution. The Newton method is implemented
for increasing p, starting at 2=p and increasing by a constant
factor on each iteration until the desired value of p is reached..
Thus successive Newton iterates can remain within their region

of convergence with respect to the pth power norm objective

function. A factorization theorem is presented for 2-D FIR filters
in terms of corresponding 1-D filters. This is valid for p=2,
however we conjecture to be true for all p. This can be used to
build large order 2-D filters. A few examples are presented on 2-
D filter design with p=60 and nonfactorable weighting function.
Here our proposed approach manages to equalize the ripple in
both the stopband and passband.

2. LEAST p®™ POWER DESIGN OF COMPLEX 2_D FIR
FILTERS USING THE COMPLEX NEWTON METHOD

The filter design will be carried out without any
constraints on the coefficients, however to assure the filter is
linear phase, hermitian symmetry on the coefficients may be
imposed, [8].

Let zD(f f 2) be the desired frequency response of the filter;

z[,(f1 ,fz) can be expressed as
2o(f1,f; ) = (£, B4

where aD(fl,fz) and %Y are the desired amplitude and
frequency response of the filter. Then the filter is formed by
minimizing the weighted pth pOWer €rTor:

G,(H) =j'_r Wit £ feolf,, £)- HE L | dfdf s
00

Where
N-1M-1

H(fl, f;) _ Z Z h"me_lwe{"m

n=0m=0

be the frequency response of a 2-D complex FIR filter with

coefficients {h“,m In'm .
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W(fl ,f 1) is a weighting function that balance tradeoffs between

passbands and stopbands. Also usually W(fl of 2) =0, on the
transition bands; p is a power larger or equal to 2. When p=2 we
our criterion is the least squares design; as p = % we get the
minmax design. The filter frequency response can be expressed
in terms of the filter coefficients as

H(f,,f,) = 8u,(f, ;) B

where
[ hy 1 [ 1 1
I hy, : I e’j”l :
. | gmeens |
; hN-lO : | enm |
| B | ey |
h= } h,, :;ENM(ﬂ,f)=} , :
| hN l I ez Nlpg) |
R | : l
| hope | : “’“‘“ ;
I

l- 2nf(N- l)p (M-~ 1)&)J

I-hN—LM—l.I
It should be noted that the (N(k-1y+n) entry is & ("2 (~)2)

2.1 The Case p= 2 (Least Squares Design)

The necessary and sufficient conditions for a complex
2-D FIR filter to have linear phase were derived in [8]. The least
squares solution of this type of filter has been derived in {8] for
the case that MN is even. A derivation for arbitrary M and N is
given in [9].
Let

11
& = [TWlt el fs) Sun 8, it
00

1.1 B
E= fj‘w(fl ’ fz) ENM (fl ’ f2)€N,M (fl ’ fz) df,df,
00
then the solution as given in [9] , is
h= %E*(E +Toaec)
Here J, is the exchange matrix of size NMxNM. From now on:

C is the complex conjugate of ¢ and ¢ is its complex
conjugate transpose. When there are no constraints imposed on
the filter response the least squares solution is obtained from :
h=E7c

It was shown in [2] for the 1-D case and in [9] for 2-D one that
expressions are identical when the desired filter response has
linear phase. It is also possible for the linear phase case to derive
the solution in terms of the top half of the vector of filter
coefficients, [8], [9].

The computation load of inverting the matrix E of size MNxMN
can be substantial if MN is large, however as it has been
observed in [8] and [9] that E is Toeplitz-block-Toeplitz and fast
algorithms exist_ for inverting it or solving the system of
equations: Fh=¢ in O(min(M,N)N 2Mz) flops.

We will elaborate further in the applicability of these results
when p>2.

2.2 Case 2<p

This is an important area of research because a filter
design for some 2<p gives filter characteristics in between p=2
and p = . In particular for large p the characteristics of the
filtere expected to resemble that of the minmax design, with
equiripples in the passband and stopband. Thus selecting a
solution for large p one expects approximation to the minmax
solution whose characterization is rather abstract and very
difficult to implement numerically.
Previously, several authors have treated pth power minimization
mainly in 1-D and for real FIR filters, [4] and [10]. The real 2-D
case has been treated in part , [3], however the error function
used was the sum of the pth powers of the absolute values of real
and imaginary components which is not equal to the magnitude
of the error raised to the pth power. Although the real Newton
method was used here the Hessian was not computed in closed
form nor any special properties of the structure of the Hessian
matrix was adressed. Also the computational speed of the
algorithm was not optimized.
Characterization of the minmax solution is by no means an easy
matter. Even for the real 1D case its foundations lay on a deep
theorem in approximation theory by Weierstrass. The complex
1D case was treated in [1] and it is already more complicated
than the real one. Here due to the lack of a straighforward
chracterization in 2D real or complex we propose the use of the
least p"h power design to approximate minmax 2D filters.
A key advantage of the pt-h power approach is that the objective
function to be minimized is convex, twice differentiable. This
impliesthat any extremeum is necessarily the global minimum.
Thus a descent algorithm based on Newton's method can be
made to converge to the true solution, by scaling back the update
if necessary, no matter where it is started, [11]. The convergence
rate is quadratic on a neighborhood of the solution.
The objectlve function to be  minimized is

(B, =_U W(fl,fz*l, (£5 )~ Bune(frfs) hI_dfldfz
- [[We ol B s,
€T

AR} =2, {f1,5) ~Eun(fif: ) 0

is the disc}epancy between the desired and produced filter
response.

Computation of complex first and second partials derivatives of

G,(1) with respect to b are obtained next by using formulas

from, [7],. These will be used in the implementation of the
complex Newton method for finding the minimum of a function.

The Newton recursion for h say [H(k)}k is written as
a2 /%) .

-1
= 1 = T~ T -1
(Fm Foi Fas _Fa'aJ (VGE FaraFaos VGE)
where the matrices and gradients of the second and first
derivatives of G ( ) are defined by
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VG =—= L_;,()
(o () o6 (7))
;rr‘:EL o ohion JIH(k)
oG (i)

FE ah'oh I,—,-g(")
We call F.; and Fg; the conjugated and unconjugated

Hessians respectively. Here h and its complex conjugate h are
treated as independent complex vectors.

It was proved in [9] that in the p=2 case the unconstrained filter
coefficient solution when the desired response is linear phase is
identical to linear phase constrained solution. The advantage of
using the constraints explicitly is the dimensionality reduction of
the problem. Here we will treat the unconstrained fillter design
case. These gradients and Hessians can be computed in closed
form, {7}, in terms the error and weight functions as follows:

VG, - 'gﬂ CRA o I R T
[

Fo. = %[IE’ - _)Iiw(ﬂ,fz ﬂa(ﬁ(‘)r?s(ﬁ)zﬁw (5.5, )}mdf,

and
Y TNEEY 1
Fo; =| 2| [[Weot. IA(h(k)] o AL
2)4 ]
['F gF gF 5. F1
'!glF F BF : }
Exulfofs)=! &.F &F F " &F
R
: . . . B
M-lF ng ng F J
is a Toeplitz-block-Toeplitz matrix
F=3&,(£,)6u(f,) i = exp(2mikt, )
F is a Hermitian Toeplitz matrix
[ F gF 3F g, Fl

- lélﬁ g.F gsF |
ENM(fl,f,)=: gF gf gF

'.gM-‘lF gZM-4F gm—3F
E is Hankel-block-Hankel matrix

- - - T . .

F=&u(6)eu(t,) 52 = expl2miks,)

F is a Hankel matrix

At first glance it would appear the computational load to obtain
the Hessians numerically is great, however if one exploits the
Hermitian Toeplitz-block-Toeplitz matrix property of E only the
integrals for the first row of F and the first row and column of

{ng]::l be computed. The total number of such integrals is

only [NHM-1)2N-1)]. For the calculation of the unconjugated
Hessian only the integrals for the first and last column of

(8.F] ™" are needed; these are (2M-1X2N-1) of them. This
results from the Hankel-block-Hankel property of F;

Implementation of the complex Newton algorithm is
accomplished with increasing p and starting at p=2 in order to
remain within its region of convergence at each iteration. As
done in [4], the typical change in the value of p is a constant
factor, A sequence for p may be:

Po=2;
For k>1; p = min[apk_l,pl, where 1 <a<1.5

3 2-D FACTORIZATION THEOREM FOR FIR FILTERS
IN RECTANGULAR COORDINATES

The design of 2-D FIR filters can be very
computationally intensive especially for large order M and N. It
is reasonable to have criteria to create optimal 2-D filters from 1-
D ones. we state a theorem valid for p=2. We think a generalized
version should hold for arbitrary p.

2-D Factorization Theorem:

Suppose both the desired 2-D filter response and
weight function factor in terms of corresponding 1-D functions,
then the 2-D filter coefficients are factorable in terms of the
corresponding 1-D coefficients. If the desired frequency response
in non factorable but the weighting function is, then the 2-D filter
solution is partially factorable in terms of matrix components of
the 1-D solution.

Proof:

The main observation here is that the complex gradient
and Hessians are the linear combination of terms like:
Euarlfisfs)> Brm(ffs) and Eyye(£,f.) . These can be factored
in terms of Kronecker product as:
eNM(fnfa) = eM(f2)®eN(fl)’

E"“ (f"fz) - éN""(f l’fz)én.u (fl'f z)T =
(CH(ALEN(H) CN(H) @'éN(fl))T -
(el )5 6T o)) - (e o (S ERET)

and .
EN,M (flafz) = éN,M(fl! fz)éNM (fnf 2) =

(észz)g’Eu(fx)XEM(fz) ®éN(fl))' -
b )om )5 (6 05 ) - Guleaule) o{aleile))

The solution for p=2 is given by:

h=E"¢
E can be factored as .

E- H W(f,,fz( CH (A (fz)') ®( &t )Eﬂ(fl)')df,dfz -
:"Wz(f,)’eu(fz)éu(f,)'df,®j'W,(f,)EN(f, E.(t.) dt, - E, ®F,

Also ¢ can be factored as

¢ =j'j'w(f,,fz)zb(fl,f,) (b f)dEdE, =
ool B [ ol Rl -
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(c oc)
The solution can now be written as;
-1

E'c=(E, ®F,) (2,®%)=

(E z_l ® El_l Xaz® El) = (Ez-l-‘:'z) ®(E1‘lax)

This now implies the 2-D solution can be factored in terms of
corresponding 1-D solutions.

If the desired resonse is factorable but the weighting is not the
solution can still be expressed as:

h=E'¢=(€,9E,)C =(E2* @E{‘)E
Thus the most demanding operation, inversion of E, is still
factorable.

NUMERICAL RESULTS

Two bandpass filters were derived using the technique described
here. In both the passband extends from 0.4 to 0.6 in both
frequencies. The stopband is the region outside the square
[0.25,0.75]x[0.25,0.75]. The weighting function in Figure 1 is 1
on the passband and uniformly equal to 10 in the stopband, thus
is not factorable. The constant factor was 1.2, p=60, M=12 and
N=10. Convergence occured after 42 iterations. Figure 2 has the
response of a similar filter whose weight function is the product
of 1 dimensional weight functions which are equal to 1 on the
passband and 3 on the stopband. Convergence occured in 47
iterations. Notice filter 1 has lower more uniform sidelobes while
filter 2 has less ripple in the passband

Figure 1: Passband filter response with non factorable weighting
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