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ABSTRACT

Recently, the Weighted Least Square (WLS)
technique for the FIR filter design has received wide
attention, since it is computationally more efficient
than other minimax techniques. However, for two-
dimensional (2-D) filter design , the conventional WLS
technique rearranges the frequency samples and the
impulse filter coefficients with 2-D form into 1-D
form, thus the WLS technique results in expensive
computation. This paper presents a new 2-D FIR filter
design method which retains the frequency samples
and impulse filter coefficients in their 2-D form.
Experimental results show that the new technique is
computationally very efficient and leads to nearly-
optimal approximations.

1. INTRODUCTION

In recent years, several techniques for the design of
two-dimensional (2-D) FIR filters have been
investigated. Much effort has been spent on designing
filters which are optimal in the minimax (Chebyshev)
sense. The minimax design yields an equiripple filter
and requires the use of sophisticated optimization tools
such as the linear programming [1], Remez exchange
algorithm [2] or frequency transformation algorithm
[3]. Kamp and Thiran [4] extended the Remez
exchange algorithm for one-dimension (1-D) to the
design of 2-D FIR filters. The optimal solution is not
necessarily unique and may fail to converge. Another
method for designing equiripple FIR filter is developed
by McClellan [3], which transforms a 1-D Chebyshev
design into a 2-D design through a change of variables.
This method is limited that not all magnitude
functions can be closely approximated. Recently, the
weighted least squares (WLS) method [5]-[7] has
received wide attention because it is computationally
more efficient and the solution can be obtained
analytically.

The WLS technique 1n [5] has extended 1-D filter
design by using a formal relation of WLS to Chebyshev
approximation and by exploiting this relation to
develop an algorithm modifing Lawson’s algorithm [8]
for the design of 2-D filters.

To our best knowledge, so far the design of 2-D
filters using WLS technique is based on the direct
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extension of the one dimension by rearranging the 2-D
frequency samples and the impulse filter coefficients
into a 1-D form. This paper presents a novel technique

which retains the frequency samples and impulse filter
coefficients in 2-D form. The new technique reduces

the computation from O(Ns) to 0(N3), where N is the
filter order. Moreover, we also present a scheme for
the updation of the weighting function to improve the
convergent speed.

2. DESIGN OF 2-D FILTER BY WLS METHOD [6][8]

In this section, we will review the conventional 2-D
FIR filter design using the WLS technique. The
frequency response of a 2-D zero-phase FIR filter can
be expressed as

N N

Hopo)= 2, 2 by .apel@mes ()
;=-N n,=-N

where h(n,,n,) is the rectangularly sampled impuse
response of the filter, N is its order, and o, and o,
are the horizontal and vertical frequencies respectively.
In the following we use a quadrantal symmetry low-
pass filter as an example to illustrate the conventional

WLS technique. Using the symmetric property
h(n;,ny)=h(tn;,£n;), - 2
(1) can be generally expanded as

H{o,,0,) = i ia(nl np) cos{oymy) cos{w, mp)  (3)

n;=0n,=0
E

=Za(i)(Pi(<D1 ,07)

i=l
where a(i) represents a(n;,n,) which is associated
with the impulse response samples h(n,,n,), i isthe
function of (n;,n,), and F=(N+1)> is the number
of free filter coefficients. The a(i) and ¢,(®,,0,) can
be readily derived respectively as follows :

K0,0), forn, =0and n, =0

an, ,n,)={2Kxn,,n,),forn; =0,n, #0orn, =0,n, =0 (4)
4h(n, ,n,),othawise
@; (0, ,0,)=cos(w; ny)cos(w, ny). (3

The ideal frequency response is defined as
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a 1,for(w, ,0, ) in passband region 6
(@,02)= 0, for(w, ,o, )in stopband region, ®)

and varies linearly between 1 and O in the transition
band. With the specification stated above the error can
be written as

Eo!,05)=2_ ahe, (o] 0% ) - (o] 03) %)

where (L+1)x(L+1) rectangular grid is chosen for the
evaluation of the error in the first quadrant of (w,0,)-
plane. Then (7) can be rewritten as a vector-matrix
form: E=®a-H , whereas the parameters are defined

as
E= [E(m?,mg) s E(m? ,colz)

a=[a(1),a2),-,a()]

T
~ ~ 0 0 =~ 0 1 ~ 1 0 ~ L L
l-l=|:H(a)1 ,0,), H(o ,@5 ), H(, ,05), -+ H(w) ,0, )] .

T
E(o},03). E@}].0b), - Eo} 0f)]

[ ,(0 ,03) 9,(®; ,0;) ¢p (@ ,02) ]

®=| ¢, (@;,03)

L9, (@, ,0;) 0, (@ ,07) P (0 ,07)]
The optimal impulse filter coefficients have the form
a=(®TR®)~1 oTRA , whereas the diagonal weighting
matrix is readily extended by
l-r(m? ,a)g) 0 0 ‘I
0 0 0
R=‘ : 0 rol,0)) 0 : l
: : 0 . 0
[ 0 0 0 0 r(m’;,m%)J
The Weighting function can be calculated in an
iterative way such as [3]

N [rk(ml,mz)MHE (@) ,mz)l
o) ,0))=
M (@0 ZZ[rk(ml ,m2)+X]|Ek(ml 0, )|

m n
where the small positive constant A is utilized to
avoid the propagation of zero weight.
1t is clear that the 2-D filter design is basically a
direct extension of the 1-D filter design, so we refer to
such technique as a 1-D WLS for convenience.
The major computational burden for solving a lies
in the computation of the inverse of the matrix @' R®

with dimension F2xF2= (N +1)> x (N +1)?
3. PROPOSED METHOD FOR 2-D FIR FILTER DESIGN

Without loss of generality, we use again the example
of the 2-D filter mentioned in Section 2. Recall that

®

(3) can be expressed in a matrix form as

H=PAPT €)

where
=[H(i.j)] = LH(-— —)J (10)
cos(ox—"I:xO) cos(OxExl) cos(OxT’t—xN)"

P= cos(lx%xO) | (an
cos(L x -E x 0) -, cos(Lx -E x N)J
[20,0) - a0, Nﬂl |

A= i (12)
[aN,0) - a(NN)J

The desired frequency response is given by the matrix

N T ~ it m o

H=[H(1,J)]=[H(I,—i—):|, 0<i,j<L. (13)

The error matrix can be written as

E=[E(i,j)]=[ﬁ(£,£)—H(i,—E)J, 0<i j<L (14) -
L L’L

L
We now define a new matrix

=[c(i.j)] ~ whose

‘elements are given

. N0 .
c<i.j)=n(i,j)+(wt'”] <Eli.)=m(0) (1) 5y (1)
3 W(i,) . :
where  R(i,j)= - 1s the weighting function
corresponding to sampling frequency grid at

S iz jm . .
(m; ,m%): T—JIT and o is a factor which affects
the convergence and convergent speed. Thus the
weighted square error to be minimized can be written
as
L L

> R )ei.) =M‘[GTG—ZGTPAPT-i-(PAPT)T(P.-\PT)]
i=0 j=0

As a result, the optimal solution of A is given
A =(p) PTG P(pTP)” (16)

It is obvious from (12) to (14) that the parameters (
E,A and H ) are retained in 2-D form. Therefore
we refer to this technique as 2-D WLS method.

The most complex part of the computation in (16) is
the inversion of a matrix P'P with dimension
(N+Dx(N+1) Therefore the computational
complexity is O(N?), which is much less than oN)
required by the conventional 1-D WLS technique
mentioned above.

The following weight updating procedure has been
found experimentally to be applied in the proposed
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WLS technique for 2-D FIR filters design.

2« [ w. (1.5) + A E (i)
Wy fin]) == L[ iL0)+ ]l k(lJ)I an

]
> 22 [Wilmon) +2] [E (m.0)
m=0 n=0
where the constant © affects the convergent speed.
Our experience indicates that when 6 = 1.2 and o >

2, the algorithm converges at a maximum speed.
4. DESIGN EXAMPLES

In this section, a circularly symmetric low-pass filter
with different specifications is designed to evaluate the
performance of the proposed technique. Results of our
technique, in terms of CPU design time and peak
ripple magnitude (prm), are compared with those
obtained by using the 1-D WLS technique presented by
Algazi et al. [5], and Gislason et al. [7] and the Harrs’
ascent algorithm [9]. .

The designed filter size is 15 x 15, passband (w, )

and stopband (o,) radius are 0.4n and 0.6m ,

respectively. The ratio of maximum error in passband
and stopband is equal to one. Fig. 1 shows our
algorithm converges rapidly to achieve approximately
the same peak ripple magnitude. A comparison of the
results obtained by the proposed algorithm and the
Gislasons’ algorithm {7} is shown in Table. 1 . This
table depicts the design time and the peak ripple
magnitude in the frequency response with different
specifications and orders under the same sampling

density Lg élO . It is clear that in each case the
N-1

peak ripple magnitude is very small and comparable to
that obtained by using Gislasons’ algorithm. The most
important is that the design time using the proposed
technique is significantly lower than that using the
Gislasons’ algorithm. Table 2 shows a comparison of
Algazi’s algorithm [5] with the proposed technique in
the design of the low-pass filter with different
specifications, orders, and sampling density (12% . l)-

It is obvious that the peak ripple magnitude obtained
by our technique is superior to that obtained by using
the Algazi’s algorithm.

Harris and Mersereau [9] have shown a comparison
of several optimal (in minimax sense) 2-D FIR filter
design techniques based on ascent algorithms. It turns
out that Harris’ algorithm converges faster than other
ascent algorithms. A comparison between the Harris’
algorithm and proposed algorithm based on the same

sampling density (%—l) is shown in Table 3. It is

worth noting that, as shown in Fig. 2 , the rate of
increase in design time for the proposed technique is
significantly smaller than that for Harris’ algorithm,

although the two algorithms are implemented on
different computers. Therefore, higher order filters can
be designed more efficiently by using the proposed
technique .

5. CONCLUSION

The paper has presented a new 2-D FIR filter design
using the 2-D WLS technique. The new technique
retains the frequency samples and the impulse filter
coefficients in a 2-D form. The design time needed is

proportional to N® rather than N° required by the
conventional WLS. Experimental results have
demonstrated that the proposed technique is quite
efficient and approximately leads to a minimax design
in two dimensions.
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Fig.1 Convergent speed of the proposed algorithm

Fig.2 Design time for circularly symmetric low-pass

filter.
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Table 2 A comparison between Algazi’s [5] and the proposed

algorithm.(d=128/N-1 )

@, o N | Algonith | d prm time
m (iteration)
s | Algazi 32 103755 | 0:35( 6 )
Proposed | 32 | 0.3719 | 0:20( 6 )
0.45x | 0.55x | 7 | Algazi 21 ] 0.2529 | 041 7))
Proposed | 21 | 0.2505 | 0:21( 6 )
o | Algazi 16 | 0.2341 | 1:00(10)
Proposed | 16 | 0.2293 | 0:30( 10)
s | Algazi 32 102733 | 041( 7)
Proposed | 32 | 0.2670 | 0:32( 11)
04rn | 0.6n 7 | Algazi 21 | 0.1336 | 0:33( 9 )
Proposed | 21 | 0.1254 | 0:28( 9 )
9 | Algazi 16 | 0.1202 | 0:50( 8 )
Proposed | 16 | 0.1131 | 0:26( 8 )
s | Algazi 32 ] 0.1916 | 0:40( 7 )
Proposed | 32 { 0.2016 | 0:28( 9§ )
035 | 065 | 7 | Algazi 21 10.0650 | 0:52¢( 9)
Proposed | 21 | 0.0639 | 0:23( 7 )
s | Algazi 16 | 0.0579 | 0:30( 5 )
Proposed | 16 | 0.0560 | 0:40( 14)

*(VAX 11/780 for Lawson’s and IBM PC 486-50 for Proposed )

Table ] A companson between Gislasons’ [7] and the proposed Taple 3 A comparison between Harris’ 9] and the proposed
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a%&°dm~ , algorithm.(d=L/N-1)
: _ tume oy o, N | Algorithm | d | prm time
Q, o N | Algorithm | prm (iteration) (iteration)
| Gislason | 03657 | 0:51(12) s | Harris 15 | 0.3673 | 0:53
Proposed | 0.3733 | 0:07(7) Proposed | 15 [ 0.3696 | 0:17(6)
045z | 055x [, | Gislason | 0.2355| 3:35(13) 045% | 0.55~ |, | Harris 15 |0.2473 | 3:03
Proposed | 0.2413 | 024(11) Proposed | 15 | 0.2511 | 0:44(7)
» | Gislason | 02331 [ 13:40(18) 9 | Harris _ 1: 8.22(5) 8;112 _
Proposed | 0.2358 | 048 (11) s g;;:sse ;o 0.2670 }:-18( :
s | Gislason | 0.2549 | 045(10) Proposed | 20 | 0.2650 | 028(11)
Proposed | 0.2609 | 0:11(11) 04r |06r |7 | Hamis 20 | 0.1272 | 3:10
04n 0.6n 5 Gislason | 0.1206 | 3:03(10) Proposed | 20 | 0.1286 | 0:64(11)
' Proposed | 0.1266 | 0:22(10) s | Harris 20 | 0.1141 | 14:14
9 | Gislason | 0.1134 | 10:01 (10) Proposed |20 | 0.1169 | 1:36(9)
Proposed | 0.1146 | 0:32(8) s | Harris 15 | 0.1905 | 1:06
s | Gislason | 0.1830 | 0:37(8) Proposed | 15 | 0.2123 [ 0:26(10)
Proposed 0.1869 0:11 (“ ) 0.35z | 0.65= 7 Harris 15 0.0656 | 1:42
0.35x | 0.65x |, | Gislason | 0.0664 | 3.15(11) . g:lf;’:"d ii gg?gﬁ‘/ g‘l‘?( 8)
Proposed | 0.0637 ) 0:16(7) Proposed | 15 | 0.0564 | 2:22(14)
9 | Gislason | 0.0561 9:31(9)
Proposed | 0.0551 | 0:47(12) | =*(PDP 11/50 for Harris' and IBM PC 486-50 for Proposed )




