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ABSTRACT

This paper presents an efficient genetic approach to the
design of digital finite impulse response (FIR) filters with
coefficients constrained to be sums of power-of-two terms.
To obtain such efficiency, i.e. a reduction of computational
costs and an improvement in performance, a specific filter
coefficient coding scheme has been studied and
implemented. The resulting genetic algorithm (GA) is
explained and compared experimentally with other state-of-
the-art design techniques on several power-of-two FIR filter
design cases. It can be seen that the proposed genetic
technique is able to attain results as good as or better than
the other methods. Moreover it can be easily implemented
on parallel hardware.

1. INTRODUCTION

The high-speed specific DSP chips designed for FIR
filtering are usually implemented using fast fixed point
arithmetic. In these cases, the number of bits used to
represent the input data and the filter coefficients must be
small for efficiency and for limiting the cost of the needed
digital hardware. Consequently, filters with very coarsely
quantized coefficients are valuable. Although several
optimal design procedures are available for the unquantized
filters [1], the design of finite word length FIR filters is a
difficult optimization problem which usually requires an
execution time very high (see for example [2]). Among the
possible quantizations, the case when the filter coefficients
are constrained to be powers of two or simple sums of
them, receives a particular interest [3-7], in fact, in binary
representation, the multiplication between two integer
numbers can be substituted by a shift if one of them is a
power-of-two. However, depending on the particular filter
design, the available design techniques may produce sub
optimal filters with poor performance.

It is well known that GAs [8] are search algorithms based
on the genetic and natural selection paradigm and that they
can be successfully employed for minimizing or
maximizing a cost function. The design of quantized digital
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FIR filters, being an optimization problem over a discrete
coefficient space, can therefore be faced using a genetic
approach. In [9], a classical quantization problem (without
the power-of-two constrain) is solved using a simple
evolutionary algorithm, where a population of several filter
design realizations (there called "filtomorphs”) was allowed
to evolve and find a sub optimal solution by the mutation
mechanism. A genetic approach 1o design power-of-two FIR
filters is proposed in [10]; in this paper, the filter
coefficients are directly coded by the binary Gray code. Such
direct coding of the filter coefficients can severely impair the
GA performance when more than 4 bits per coefficient are
used [10].

In this paper we present an efficient design method for
digital FIR filters with power-of-two coefficients, which
effectively uses the genetic approach. In order to reduce the
computational cost and improve the performance, a specific
filter coefficient coding scheme has been studied and
implemented. The proposed method can cope with a free
mixture of frequency and time domain filter specifications,
is able to find solutions also for reasonably long filters and
provides sub optimal solutions with good performance.

Moreover, due to its implicit parallel nature, this GA
approach can explore many possible solutions at each
generation and can be easily and efficiently implemented on
parallel machines.

2. THE DESIGN METHOD

Let us consider only the case of linear-phase symmetric real
FIR filters with odd length, since the extension to other
linear-phase filters is straightforward. The frequency
response H(f) of such filters is given by:

(N=-1)/2

H(f)=h0)+ D 2h(n)cosQrfn), (1)

n=1

where f is the normalized frequency (0</<0.5), N is the
(odd) length and A(n), n=-(N-1),..,0,..,(N-1), are the filter
coefficients. Due to the symmetry, it holds true that
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h(n)=h(-n), which allows to reduce the free parameters of the
filter to (N+1)/2, h(n)=0,..., (N-1)/2.

Such coefficients are then constrained to be a simple sum of
power-of-two terms, i.e. they must belongs to the domain
D:

A
o a= EckZ"‘,

D= k=1 ; @
¢, €{-10,1}, g, €1{0,1,...,B}

which is ordered as follows:

O'.L} :

Where A is the number of powers of two which form the
coefficients (usually A=1 or A=2), B is the maximum
number of shifts allowed by the domain, and L is the
number of elements of the domain D. The minmax criterion
minimizes the maximum error between the filter frequency
response H(f) and the ideal response T(f) on a dense grid of
frequency points fy,, m=1,....F, equally spaced between 0
and 0.5, i.e. minimizes:

D={o,a,,..., oy < 0y <..<qp.

Fy(G,h(n)) = max_

W(f,) ®

[H(f )

T(fm)}

where W(f) is a suitable weighting function, F is a-priori
selected, G-1 is the passband gain, and n=0, ..., (N-1)/2.
Since it is known that the coefficient G of the quantized
filter assumes a particular relevance [4,5,7], the G value is
considered an additional free parameter of the problem. In
fact due to the non uniform distribution of the elements of
the domain D, a gain variation can improve the frequency
response more than 6 dB, by a reduction of the coefficients
quantization error [4,5].

In the proposed method a GA approach is employed for
minimizing F( with respect to the (N+3)/2 free parameters
G and A(n)=0, ..., (N-1)/2 where G is quantized and the h(n)
belong to the domain D with A and B a-priori given. The
simplest way for coding these free parameters into the
genetic chromosomes of the optimization algorithm, is to
use directly the binary or Gray representation of their values
{10]. When this coding scheme is used, the optimization
process requires a computational time which is related to the
parameters’ quantization level, i.e. the number of bits used
to represent them. If this number of bits increases, the
search space becomes very large and the GA design method
begins to exhibit poor performance (see for example [10]).
In order to reduce the search space and consequently the
computational time, instead of coding the quantized A(n) and
G values, we code the deviations, inside specified interval,

from some leading values. As leading values for the
coefficients h(n), the corresponding unquantized optimal

coefficients ho(’l)e R are chosen, computed by the
Parks-McClellan algorithm {1]. As leading value of G, the
value G, € R nearest to 1 is selected, which minimizes

the following function [5] for G €[0.5,1]:

|G hy(n
(- 216 )]

; 4)
n——(N 1) ..... (N-1) G ¢

where Qp|.] represents the rounding to the nearest power-of-
two belonging to the domain D.

Let hy, (n) = Qplhy(n)] where hy,(n) € D represent

the quantized optimal filter coefficients which will be used
as leading values.

Let iy, (n) be the index of A, (n) in the domain D:

Pylhyp(m)];

where P pn[.] returns the index of the position of the
argument inside the ordered domain D.

lop (n) = lop (N)EN; 5)

As previously stated, for each index value iy, (n)

computed by (5), corresponding to a leading value Ay, (1),
is associated an interval 1, (iy,(n)) of indexes of allowed

values for the n-th coefficient. To describe such intervals, a
pair of integer values (ap, zp), ane N, zp€ N, is used for

each I, (i,,(n)). The term a, represents the number of

the allowed values around i, (n) and zp<ap, represents the

relative position of i;, (n) in this interval (bias factor).

The z,, value is selected irr order to roughly center the real-
valued interval corresponding to the index interval
1y (45 (n)) around the leading value /1,,(n). Fig.1 shows
an example of this coding scheme in a simple case where
each ay, corresponding to the n-th filter coefficient, is coded
by 4 bits (16 possible values around the leading value).

For the G factor, the interval [Gg-0.15, G+0.15] is coded
using a binary code of 8 bits (256 levels around the real
leading value). The chromosome then contains the binary
codes of the indexes ap n=0, ..., (N-1)/2 plus the binary
code of G.

Using such integer values as genetic strings, a population
of quantized filters is created. The evolution then takes place
with given probabilities of mutation and crossing-over. The
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fitness of each individual is computed by expr. (3) and then
normalized so that the lowest fitness in the population is
set to 0 and the highest to 10000. To avoid the genetc drift
in small populations, we have chosen to use a multiple
crossing-over [8] on the genetic strings of two individuals.
An elitist mechanism, similar to the De Jong's model [8],
has been also implemented, increasing the fitness of the
best individuals in the population by a fixed amount
roughly proportional to the fitness itself.

After a given number of generations, the performance is
measured by the maximum weighted error e4B expressed in

decibel [4,5]:

0
i = ; ©)
[(Hm,x<f)+Hm<f>)/z B

where & is the peak weighted ripple, Hmax(f) and Hmin(f)
are respectively the maximum and minimum value of the
frequency response in the passband.

3. EXPERIMENTAL RESULTS

The proposed genetic technique (GA), the simulated
annealing algorithm (SA) in [5], the computation of the
real-valued optimum minmax filter obtained by the Parks-
McClellan algorithm [1] and the direct rounding to the
nearest power-of-two ("rounded” label), have been
implemented on a computer system. Many linear-phase FIR
filter design experiments have been carried out with the
implemented methods varying the filter lengths and the
initial conditions for the GA and SA algorithms. The best
results are here reported.

Table 1 and Table 2 report the peak weighted error in decibel
edp versus the number of taps of the filter. The filter
lengths and the other parameters (A=2, B=9, F=512) have
been selected in order to compare the results also with those
obtained by the mixed integer linear programming (MILP)
technique (see [3,5]) and by the proportional relation-
preserve (PRP) design method (see [4,5]). The probabilities
of mutation and crossing-over for the proposed GA method
were set to 0.006 and 0.9 respectively, with populations
from 30 to 100 individuals.

In Table 1 (filter length from 15 to 35), it can be noted that
the GA can obtain the same results of the SA technique,
while its performance is slightly better than the PRP
method, but slightly worse than the MILP approach. In
Table 2 (filter length from 51 to 59), it is shown that the
GA approach can attain better results than the PRP and SA
techniques since longer filters are involved. No data are
available for the MILP, due to its high computational cost.

4. CONCLUSIONS

The proposed design method, together with the SA
approach, are very general, since they can cope with any free
mixture of frequency and time domain filter specifications.
As the SA, it is able to find solutions also for reasonably
long filters providing sub optimal solutions with good
performance. However, the SA algorithm usually requires
several runs to provide the best results, while the GA
method is able to find them in a single run, since it
explores many different solutions in parallel.

It is known that on a single CPU the SA method can be
much faster than a classical GA approach, However, by the
use of the proposed efficient coding for the chromosomes,
our GA design method in the test cases resulted only 1.5 o
2 times slower than the SA, but it was able to easily
overcome the simulated annealing algorithm when
implemented on a parallel machine.
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Table 1. Performance comparison for filter length from 15 to 35 taps.

Fig. 1. The pair (a,, ,z,)) for filter coefficient coding over the power-of-two domain D.

FIR length rounded MILP GA PRP SA
15 -23 -29 -29 -29 -29
17 -24 -32 -32 -32 -32
19 -25 -37 -37 -37 -37
21 -24.5 -37.5 -37.3 -37.3 -37.3
23 -25 -39 -39 -38 -39
25 -25 41 -40.5 -38 -40.5
27 -26 42 -41.3 -40.5 -41.3
29 -26.5 -44.5 -43.1 41 -43.1
31 -26 -44.5 -43.1 -40 -43.1
33 -26.5 n. a. -44 8 -39 -44.5
35 -26 n. a. 45 -41 -44.6

Table 2. Performance comparison for filter length from 51 1o 59 taps.

FIR length rounded McClellan GA PRP SA
51 -24.6 -34.0 -33.2 -31.7 -33.0
53 -25.1 -34.7 -33.5 -30.0 -33.0
55 -24.8 -35.5 -33.8 -32.0 -33.2
57 -25.7 -36.9 -35.1 -34.0 -34.4
59 -26.4 -37.1 -35.2 -33.5 -34.5

Table 3. Comparison of the gain factor G for the SA and GA.

FIR length SA-gain GA-gain
51 0.906 0.905
53 0.910 0.904
55 0.908 0.907
57 0.906 0.918
59 0.910 0.911
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