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ABSTRACT

This paper presents the design of 2-D complex FIR
filters using the weighted integral least-squares error criterion
(WLS). Both the cases of arbitrary magnitude with linear and
arbitrary phase specifications are addressed. The solution of
the linear phase case is obtained using the complex Lagrange
multiplier formulation to incorporate the necessary constraints
for linear phase response. This results in a computationally
efficient filter design technique requiring the solution of a
Hermitian Toeplitz-block-Toeplitz system of linear equations
for which fast algorithms are available. Two illustrative filter
design examples are also presented.

1. INTRODUCTION

The design of 1-D complex FIR filters which satisfy
specified asymmetric amplitude or phase responses necessary
in radar/sonar clutter suppression problems and other
applications, has been considered recently [1], [2). More
recently, the problem of complex 2-D finite impulse response
(FIR) filter design has been investigated recently by some
authors [3], [4]. The work of [3] has focused on the use of
eigenfilter techniques which however only approximately
minimize the WLS criterion and also require more computation
than the direct WLS optimization methods presented here. The
work presented in [4] is related to the present paper although
the method described there is not as general since it is
restricted to even length filters.”

Two WLS techniques, one for arbitrary phase
response (unconstrained method) and the other incorporating
the linear phase constraint (constrained method), are
developed here. The direct WLS optimization methods
developed here utilize the complex gradient operator [5] which
avoids decomposing complex variables into real and
imaginary parts. Due to the product dimensionality of the 2-D
complex coefficient vector, the computational aspects become
of paramount importance. The methods presented here are
computationally efficient for general complex 2-D filter
design.  Furthermore, this paper makes use of a 2-D
factorization theorem developed in a companion paper [6] to
further reduce the computational demands for a certain class of
filters. Additionally, for a further special but useful class of 2-
D filters, we show that our techniques result in a solution
which altogether avoids the need for matrix inversion or the
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solution of a linear system of equations thus reducing the
computational demands dramatically. The relationship
between the constrained and unconstrained techniques is also
examined. Finally, two illustrative filter design examples are
presented with comparison with the results in [3].

2. WEIGHTED LEAST-SQUARES COMPLEX 2-D FIR
FILTER DESIGN

We derive here the solutions for the complex 2-D FIR
filter coefficients which minimize the weighted integral least-
squares error criterion both subject to affine (generalized
linear) phase constraints as well as being unconstrained. The
latter design would be suitable for arbitrarily specified
magnitude and phase requirements. Let

zD(fl,f2)=aD(f,,fz)ej."(f"f‘) be the desired complex-
valued 2-D frequency response where ap(f, f2) and

¢D( fi» fz) represent the amplitude and phase responses
respectively. Let

M~-1 N-1 . .
H(f1,f2)= Y Y hp,e /2™ 2™ (g

m=0 a=0

be the frequency response of a 2-D complex FIR fiiter with
coefficients h_ , using a normalized sampling frequency of 1

m,n
Hertz. Let h be the (MNX1) concatenated vector that
"vectorizes" the 2-D filter coefficient matrix with elements
h »» 1-€. the vector that consists of the stacked columns of the

m
aforementioned matrix. We seek to minimize the weighted

integral squared-error criterion

(8= [, [ wlf1.f2)

| 2o(finfa) - d(F1 £2) [ dfs df,

where dg(f1.f2)=d,(f1) ® d5(f2), (® denotes Kronecker
product of matrices [7])

di(f1)= [1, 2T Gi2eM-1f, ]T

Qz(fz) = [1, e/ i2x(N-1)f, ]T

)
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and w( hs fz) is a real non-negative weighting function. The

superscripts H and T denote the conjugate transpose and
transpose operations respectively. It is noted that (2) allows
for incorporation of zero-error 2-D transition bands by letting

w(fl,fz) be zero over those regions.

2.1 Constrained Weighted Least-Squares Method

The necessary and sufficient conditions for a 2-D
complex FIR filter to have affine phase (generalized linear
phase with an offset) response has been derived by Abatzoglou
[4] using an extension of the method developed in [2] for the
1-D case. Using the linear phase (zero offset) conditions
results in the filter coefficients being constrained to be
conjugate-symmetric,

Pon = Apg)—m N-1-n fOrallm,n 3)
where * denotes complex conjugation.

The solution is obtained by appending the
constraints (3) to (2) using complex Lagrange multipliers. A
solution has been obtained by Abatzoglou in [4] by directly
incorporating the constraints in the objective function (2)
which is, however, valid only for even product length AMN. The
solution given here using Lagrange multipliers is more general
and valid for both even and odd product lengths AN.

The constraints (3) can be compactly represented as
" = Eyy h where h is the concatenated (MN X 1) vector of
2-D filter coefficients and E,, is the MN-order square

exchange matrix with ones on the cross-diagonal and zeros
elsewhere. Since the objective function augmented with the
constraints using the complex Lagrange multipliers must be
real, we have

Jl(h)=~’(ﬁ)“ir [ﬂ‘ —Eyn ﬂ]

~ A" [h-Eyy k"]
where A is a complex Lagrange multiplier vector. Expanding

C)

(4) and differentiating with respect to E according to the

rules of the complex partial derivatives [5] and equating to the
null vector yields:

3’%= Jolo A ) 2(fi ) dic(fin o)

+w(finf) de(fnf) RS d ()
~A+EyyA =0
(Note: The exchange matrix E,,y satisfies E,.T,N = Eyx and

EZy = Iy where Iy is the identity matrix).
Let

0= [ ['Wfinf2) delfi o) dE(f fo) i s (6)

E=J;I;w(fl’f2)ZD(flvf2)4K(flvf2) dfydf; ()

Note that Q is a Hermitian Toeplitz-block-Toeplitz or doubly-
Toeplitz matrix. From (5), (6) and (7), one obtains

Qh—-u=A-Eyyi’
Let
_7_’=l—EMNi‘

then
Qh=u+y ®)
We next determine the Y vector so that the constraint
h” = Eyy h is satisfied. From (8), we have
EyvQh=Eyyu+Eyyy 9

Since Q is Hermitian Toeplitz-block-Toeplitz and, in particular,
Hermitian-persymmetric we have that [8]

Eyn Q=0 Eyy (10)
Also, Eyn 7=EMN&"i‘=_Z‘ (1)
From (9), (10) and (11), one has

Q Eyyh=Eyyu-7

and from (8)

Q'K =u"+7"
and, hence, by subtraction -

Q' [K -Emvh]=27"+4"~Eyyu  (12)

The use of the constraint " = Eyy  in (12) yields

1 .
7= 5[ Ewwi” - u]
and, from (8), the solution of the 2-D filter coefficient vector as

Qﬂ=‘;'[£+5mv.’!‘]
] (13)
or _=§Q—l [E"'EMN!‘]
It can be readily verified that the solution (13) does indeed
satisfy the conjugate symmetry constraints.

Since ¢ is Hermitian Toeplitz-block-Toeplitz, (13)
can be solved using fast algorithms as discussed under
"Remarks.” We also note here that (13) can be expressed in an
altemate form for even product length fillers (where MM is
even). Since A is conjugate symmetric, it can be written in
terms of the upper half coefficient vector A, as

h,
h= .
~ 1 Eunp by,

and (13) can be written as

[Qu le] h, 1 [2,} Epnpa 41
i =il Sl as
Q2 Onl|Ewvp by 2||ur] |Eynp u,

where O, =y and ¥ has been similarly partitioned into u ’
and u,. Using well-known matrix inversion techniques for a

2x2 partitioned block matrix, the solution for the upper half
coefficient vector A, can be expressed as

1 _ -1
A, ’_‘E[Qu -0, 07 ng]
(15)
[y_,, +Eynp up ~ Q12 Op (EL +Eynp i, )]
Although the dimensionality of (15) is half that of (13), the

expression for A, is more complicated requiring additional
products of matrices and inversion of a matrix

[Q” -0 Q,'l1 Qg] which is not necessarily block Toeplitz.
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2.2 Unconstrained 2-D Filter Design Methods

The solution is obtained immediately from the
preceding development in Section 2.1 by deleting the
constraints and Lagrange multipliers to yield

Qh=u or h=Q7'u (16)
Of course, equation (16) does not in general satisfy the
conjugate symmetry constraints.

2.3 Remarks

1. The solutions (13) or (16) for the 2-D filter
coefficient vector require solving a set of MN simultaneous
linear equations whose associated matrix is Toeplitz-block-
Toeplitz. Fast algorithms exist for inversion of such matrices

[9] requiring o(min(M,N)M2 Nz) complex flops as

opposed to 0( M3N 3) complex flops for general matrix
inversion techniques resulting in a computational reduction
by a factor of max{M,N). As noted in Section 2.4, special
cases of 2-D filter design allow even further computational
reduction. Additionally, if the weighting function is taken as
uniform over the entire f; — f, plane, the ¢ matrix reduces to
the identity matrix as can be seen from the following:

The matrix d,(f.f,)d¥ (f1.f2) is Hermitian
Toeplitz-block-Toeplitz whose first "block” row is

[ do(f2)df(f2). €727 do(£2) 47 (£2),
e PN g, (f,) 3 (f) ]
Since the (m,n)th element of J;gz(fz)gg(h)dfz is

17)

1 ion(me
Ioeﬂ”("' /2 dfy=1, for m=n and zero otherwise,
integration of (17) with respect to f, yields a "block" row

[Iy. e-12’9'| Iy, e-lz"(M-l)fl Iyl (18)
Further integration of (18) with respect to f; yields the first
"block” row of Q as

[ 1 N» Q, seey Q ]
and hence, using the Hermitian-block-Toeplitz property, we
have Q =Iyy.

This property allows certain special cases of the 2-D
filter design to be obtained in a computationally trivial
manner since no solution of a system of linear equations is
required. Although zero-error transition regions
corresponding to zero weighting are not allowed in this
formulation, other suitable response models in the transition
bands using uniform weighting may be substituted.

2.  Although the filter coefficient vector resulting from
(13) satisfies the conjugate symmetry constraint whereas that
from (14) does not, in general, it is worth noting that if the

desired response phase function @p(fy,f2) is taken as linear
phase with delays 7, =(M —1)/2 and 7, =(N —1)/2, then,
surprisingly, the unconstrained solution yields the same

solution as the constrained one. This was shown for the 1-D
case in {2] and can be seen for the 2-D case from the following:

With zp(f) = ap(fi.f2) e 2™ (M-1)2 ~j22 (N-1))2
u= J.;.[;W(fhfz) ap(f1.f2)
[e-ﬂﬂ‘l (M-1)f2 41 (fl )] (19)

®[e 2% W 4, (1,)| a1, df,
Since Eyy = Ej; ® Ey, we have

Eyy i’ =J.;j(:w(f1'f2)an(f1’fz)
[ejzm M-D2 B4 (f, )]

® [eizﬁz (N-1)/2 Ey 4; (f2 )] #1 df,

It can be seen that the two expressions (19) and (20) are the
same and hence equations (13) and (14) become the same for
this case.

(20)

2.4 2-D Factorization Theorem

It has been shown in [6] that if the 2-D weighting and
desired response functions w(f,f,) and zp(fi.fs) are
factorable in terms of their corresponding 1-D functions over
rectangular regions in the f; — f, plane, ie.

w(f1, f2)=wm(fi)wa(f2)
ZD(fpfz)'—' le(fl)zbz(fZ)

then the 2-D filter coefficient vector is "factorable,” i.e. it can
be expressed as

and

h=hy®h, €3))
where h,, h, are the corresponding 1-D filter coefficients of
lengths M and N respectively where

1 .. . R
h1='2'Q11[¥1+EME1] or ﬂ1=Q11¥1

as appropriate for the constrained and unconstrained cases. Q,,
u, are the corresponding 1-D values [2]. Similarly,

1 __ » -
by =50 [+ Eviy] o b =0f'u

for the f, filter.

Equation (21) implies a substantial computational
savings capability over the general 2-D filter design, for
designing a certain class of 2-D filters. Note that zero-error
transition bands defined over rectangular regions in the
fi1— [, plane certainly satisfy the condition for weighting

function factorability since w(fy,f,)=0 on those regions.

A further property of semi-factorability is noted here.
Even if the desired response function is non-factorable but the
weighting function is, then the 2-D filter coefficient vector can
be computed as[6]

h=[07" ®0;'|u
where the inverses required are (M XM) and (NXxN) as

opposed to the full 2-D filter design method requiring an
(MN x MN) matrix inversion.
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Figure 1 — 2-D Rectangular Filter Response.

3.0 COMPUTER DESIGN EXAMPLES

Two illustrative filter design examples, low-pass
rectangular and circular 2-D filters, are presented here. While,
in general, the evaluation of the Q matrix and the U vector
Tequire two-dimensional numerical integration, in many cases
these quantities can be computed in closed form such as for
rectangular 2-D filters with piecewise linear amplitude
response specifications and uniform weighting functions.
Also, in some cases such as the circular 2-D filter example
presented below, partial closed-form formulas can be used to
reduce computation. In both examples below, the desired

phase response is ¢p (f;, f5) = e I M-1)I2 —j21f, (N-1)/2

Rectangular Low-Pass 2-D Filter Design. Figure 1 shows the 2-

D frequency response for a 2-D linear phase 24 x24
rectangular filter designed using two 1-D filters of lengths 24
each utilizing the method described in Section 2.4 (the 2-D
Factorization Theorem). The passband extends from .3 to .7 in

both fi and f2 dimensions while the stopband extends from

Oto.2and 8 to1linboththe f and f, dimensions. The

remaining unspecified regions constitute the transition band.
The peak passband and stopband errors are .005743 (.049 dB)
and .002876(-50.82dB) as contrasted to peak errors of
-005826(.051 dB) and .003607 (-48.86dB) obtained in [3]. The
design time was 6 seconds on a Macintosh Quadra 700.

Circular Low-Pass 2-D Filter Design. Figure 2 shows the 2-D

frequency response for a 2-D linear phase 25x25 circular
filter which could not be factored into two 1-D filters. The two
dimensional integral required for the computation of Q and u
defined over a circular region is computed using a
combination of a closed-form formula for the inner integral
and numerical integration using Simpson's rule. The circular
passband radius is .25 centered at frequency f; = f, =.5. The
transition region is the circular annulus between radii .25 and
-35. The remaining region constitutes the stopband. The peak
passband and stopband errors are .00525 (.045 dB) and .0092
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Figure 2 — 2-D Circular Filter Response.

(-40.73dB) as contrasted to peak errors of .0068(.059 dB) and
-007398(-42.6 dB) obtained in [3].

REFERENCES

[1] K. Pruess, "On the design of FIR filters by complex
Chebyshev approximation,” IEEE Trans. Acoust., Speech and
Signal Processing, vol. 40, No. 5, pp. 702-712, May 1989.

[2] A. G. Jaffer and W. E.. Jones, "Constrained Least Squares
Design and Characterization of Affine Phase Complex FIR
Filters," Proceedings of 1993 Asilomar Conference on Signals,
Systems, and Computers, pp. 685-691, November 1993.
Modified version of paper submitted to IEEE Trans. Signal
Processing for publication.

[3] 8. C. Pei and J. J. Shyu, "2-D FIR Eigenfilters: A Least-
Squares Approach,” IEEE Trans. on Circuits and Systems, vol.
37, no. 1, pp. 24-34, January 1990.

[4] T. J. Abatzoglou, "Least pth Power Design and
Characterization of Affine Phase Complex 2-D Filters and the
Min-Max Approximation," presented at the 28th annual
Asilomar Conference on Signals, Systems and Computers,
November 1994.

[5] D. H. Brandwood, "A complex gradient operator and its
applications in adaptive array theory," IEE Proceedings, vol.
130, Pts. F and H, No. 1, pp. 11-16, February 1983.

[6] T.J. Abatzoglou and A. G. Jaffer, "Least pth Power Design
of Complex FIR 2-D Filters using the Complex Newton
Method," presented at the 1995 IEEE ICASSP, May 1995.

[7] A. Graham, Kronecker Products and Matrix Calculus, Ellis

Horwood Limited, West Sussex, England, 1981.

(8] S. L. Marple, Digital Spectral Analysis with Applications.

Englewood Cliffs, New Jersey, Prentice-Hall, 1987.

{9] H. Akaike, "Block Toeplitz Matrix Inversion,” SIAM J.
Appl. Math, vol. 24, no. 2, pp. 234-241, March 1973.

1259



