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ABSTRACT

Based on a discrete frequency domain formulation of the
design problem of two-dimensional FIR filters, a closed
form expression is derived for the matrix of filter
coefficients without imposing any assumptions of having a
symmetric, antisymmetric or zero-phase frequency
response. The matrix in question is derived by minimizing
the Frobenius norm of the difference between the matrices
of the actual and ideal frequency responses at the points of
a frequency grid. The method has the advantages of
conceptual and computational simplicity.

L INTRODUCTION

Ahmad and Wang presenied an analytic closed-form
solution to the least squares design problem of real
impulse response (with a square region of support) zero-
phase 2-D FIR filters with a quadrantally symmetric or
antisymmetric frequency response [1]. They formulated
the problem as a discrete frequency domain optimization
one and used the properties of matrices and trigonometric
functions. Recently Rajaravivarma and Rajan derived a
closed form solution to the problem using time-domain
optimization and employing the DFT transformation
matrices [2]. They first presented the solution to the
general frequency response specifications and then
simplified it for the cases of quadrantal symmetry and
antisymmetry.

In this paper a discrete frequency domain formulation
based on matrix notation is presented for the general case
where no assumptions of a real impulse response or zero-
phase frequency response are made. A closed-form
expression will be derived for the impulse response matrix.

II. MATHEMATICAL FRAMEWORK

The frequency response of a two-dimensional FIR filter is
given by [3] :

! —j(@m+a,n,) .
Hlopo) = 2y nn, 10m2° rree M)
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Although the impulse response has a rectangular region of
support centered at the origin, there is no implied
assumption of symmetry or antisymmetry, i.c., H(®(,09) is
not generally zero-phase. Moreover h(nj,ny) is not
restricted to be real. Equation (1) can be compactly
expressed as!:

Ho,o))=/" (0)4g(@,)) @
where A is the 2N{+1) x (2Np+1) matrix :
h(-=Ny,-Njy) h(-Np,Ny)
4= . . 3
h(N{,-Ny) h(Ny,Ny)

and f(o]) and g(w;) are respectively (2N + 1)- and (2Np
+ 1)-dimensional vectors defined by :

Ju*(a)l) Jv*(wz)
f(wl) = 1 and g(wz) = 1 N )]
u(col) v(coz)

In the above equation u(w)) and v(wy) are respectively
Nj- and Nj-dimensional vectors defined by? :

jo -jo
e 1 e 2

u(a)l) = and v(a)z) = ) (5)

N o
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IThe superscript +, * , T denotes the complex
conjugate transpose, the complex conjugate and the
transpose respectively.

2Notice that the exponents of the elements of vectors
u(w1) and v(wy) are positive and negative
respectively.
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and J is the contra-identity matrix (having ones on the
antidiagonal and zeros elsewhere) of the proper order .
It is straightforward to show that :

*
u (col) = u(—wl) 6)
*
S @)= Jf@) ™
and similar properties hold for the vectors v(w;) and g(e
2

Discretizing the continuous frequencies ©) and wj by
taking 2M and 2M, samples of them respectively, we get

(o), =-r )

i i

,i=1,2 8)
It will be assumed that the number of frequency samples in
each direction is greater than or equal to the length of the
impulse response in that direction, ie., 2M; > 2N; + 1)
for i = 1,2 . Defining the scalars Hpyj ymp as samples of
the frequency response H(wj,0p) - of the filter to be
designed - at the above discrete frequencies, i.c.,

Hm m H (col) ,(wz) 9
r 5
and using Eq(2), we get
+
= 10
71 m V. (10)

12 1 2
where the vectors fp,] and gy,,5 are given by :

fml =f (a)l)m ,m1=1,...,2M1 (11)
1

= =1..,2M

g, =& (wz)m , My , 2My (12)
2 2

Let H be the 2Mj x 2M, matrix of the frequency response

samples Hpyj mp » i€,

H= Hm m | (13)
1’2

Using Eq(10), the above matrix can be expressed as :

H=F'AG (14)

where F and G are respectively the (2N + 1) x 2M) and
(2N + 1) x 2M, matrices defined by :

Folh o (15)

G=(g1 gzMz). . (16)

III. THE OPTIMIZATION PROBLEM

Let H° be the matrix of samples of the ideal (desired)
frequency response at the same discrete frequencies of Eq
(8). The square of the Frobenius norm [4] of the matrix
difference H - H° is defined by :

M 2M 2
E=lg-wf- T £ -m (17
m =1m, =1 6 T T T
and can also be expressed as3 :
E= tr[(_fi—w)*(ﬁ—w)] . (18)

Using Eq(14) and the properties of the trace of a matrix it
can be shown that :

E= tr(GG+A+FF+A ~AYFH° G

(19)
~GH°* FY 4+ HoT H°)

The rectangular matrix A of the impulse response of the
FIR filter to be designed will be derived by minimizing the
above error function. Here use will be made of the
following theorem whose proof is given in the appendix :

Theorem :

The minimizer of the function :
f(A4) = tr(BA+CA —A+D—D+A)) (20)

where B and C are nonsingular Hermitian matrices of

order n and m respectively and A and D are m x n

complex matrices, is given by :
1

a=clpgt, @l)
Applying the above result to Eq(19), we get

-1 -1
A= (FF+) FH°G+(GG+) . (22)

Using the properties of the pertinent matrices and
performing a substantial algebraic manipulation, it can be
proved that :

FFT = 2M 1. (23)
and
GGt = 2M,1 . 24)

3tr(A) denotes the trace of matrix A.
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Substituting Eqs (23) and (24) into (22), one gets the
following compact expression for matrix A of the impulse
response of the FIR filter being designed :

1 +
A=—————FH°G . (25)

4
Ml MZ

APPENDIX

The Theorem of Section III will be proved by stating and
proving the following lemmas :

Lemmal:

If A is a real m x n matrix and B and C are square real

matrices of order n and m respectively, then :
v, tr(BA TCA) —caB+cTaBT . (A1)

Proof : Let the columns of matrix A be denoted by a; and
the rows of matrix B by b®, i.e.,

A= a a, .. a (A2)
5D
5(2)

B= (A3)
RO

and let ¢; be the i th column vector of the identity matrix.
Therefore :

n
tr(BA TCA) =¥ eiT(BA TCA)ei
i=1 (A%)
n .
= 5 sW4T Ca,
i=1
Since
aTCai
ATCai = (A5)
aTCa,
n i
Eq(A4) can be expressed as :
T non T
f= tr(BA CA) =Y X ba Ca (A6)
. . ygJj 1
i=1j=1
Since
T \._ T ) _
Vx(y x)—Vx(x y)—y (A7)
and

v (xTCx) - (c + CT)x (A8)

the gradient of the function of Eq(A6) with respect to the
column vector ay, is given by :

n n T T
Vakf=i§l bikCai+jEIb/qC aj+bkk(C+C )ak

ik j#k

(A9)
Defining the gradient of f with respect to matrix A as :

VAf=(Vaf Va /o Va f)
1 2 n
the validity of Eq(Al) is directly established .

(A10)

Corollary 1 :
If the real square matrices B and C are both symmetric or

skew-symmetric, then :

v tr(BA TCA) =2C4B . (Al1)

A

Corollary 2 :
If one of the two real square matrices B and C is

symmetric and the other is skew-symmetric, then :

v, tr(BATCA) e (A12)
Lemma 2 :
If A and D are m x n real matrices, then :
T T
=V =
o o a)-v o 70
r r (B1)
v, tr(DA ):vA tr(AD )=D
Proof :
Since
n n ”
tr(DTA) =3 eiTDTAel_ =3 dl_r a ®2)
i=1 i =

applying (A7), one gets :
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v tr(DTA) -d . B3)
ak k

Using definition (A10), one gets :

v, tr(DTA) =D. B4)

The remaining parts of (B1) follow by the properties of the
trace of a matrix .

Corollary :
If A and D are m x n real matrices and B is a real square

matrix of order n, then :

v, tr(BA TD) - DB (B5)
Proof :

Eq (BS) follows directly from Eq (B1) since :

tr(BA TD) - tr(DBA T) (B6)
Lemma 3 :

If A and D are m x n complex matrices and B and C are
nonsingular Hermitian matrices of order n and m
respectively, then the minimizer of :

£(4) = tr(BA *ca-4tD- D+A) (CD)
is given by :

4=cppl. (€2)
Proof :

Let the real and imaginary components of the relevant
matrices be denoted by the subscripts r and i respectively,
ie.,

A=4 +J4 (€3)
B= Br + jBI_' (C4)
C=C +JC, (C5)
D=D +jD. . (C6)

Since B and C are Hermitian, B, and C, will be
symmetric, and B; and C; will be skew-symmetric. Since

BA+=(B AT+B,A,T)+J'(B_AT—B A_T) 7

ryr r 1 1 1 r r i

and

ca=(ca -ca)sfca+ca) (C8)
r r 1 1 r i P r

it can be shown that :

Ba*Ca= (8 4 rT cA+ B’_AI_T c4 - BrArT cA4- EiAI_T cA.
+BrAI_TCrAI_ +B 4 ,T cA - EiArTcrAi - BiArTciAr) (€9

T T T T,

+jBA'CA+BA'CA+BACA +BA
rr ri i1 r i rr 1r L i r

+Balca —paTca-BaTca +8alca)
1 r rr rr 11 r ! rr ri I 1

Since

A+D=(ATD +A_TD,)+j(ATD_—A_TD) (C10)
Ia r 1 1 r 1 1 r

and

DT A= (DTA +D,TA,)—j(D_TA - DTA,) (C11)
Yy r 1 l 1 r r 1

it can be shown that :

tr(A+D + D+A) = 2tr(ArTDr + AiTDi) . (C12)

Substituting Eqs (C9) and (C12) into Eq (C1), taking the
gradient of f with respect to A, and A; and utilizing Eqs
(Al1),A(12),(B1) and (BS5), one gets : :
v s=2caB -caB-CAB-CAB -D ) (€13
Ar rrr iri rii iir r
v f=2(c AB +CAB +C AB ~C.AB -D_) - (C19)
Ai rri dirr rir iii i
Applying the minimization conditions :
v = =
4 =V A_f 0
r 1
and combining the resulting equations using Eqs (C3)-
(C6), one gets after some algebraic manipulation :
CAB=D. (C16)
Eq (C2) follows from the above equation by the
nonsingularity of the matrices B and C .

(C15)
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