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ABSTRACT

In this paper, we consider the problem of making a min-
imum phase signal from an arbitrary one-dimensional sig-
nal by adding a point signal and its application to a two-
dimensional phase retrieval problem. In particular, we show
that a two-dimensional phase retrieval problem can be de-
composed into several one-dimensional phase retrieval prob-
lems so that a M x N two-dimensional signal can be recon-
structed from its Fourier transform magnitude by solving
min{M, N} + 2 one dimensional phase retrieval problems.

1. Introduction

The phase retrieval problem is a problem of reconstructing
a signal or the Fourier transform phase of the signal from
its Fourier transform magnitude [1]. This problem does not
have a unique solution in general in the sense that there
exist many signals that have the same Fourier transform
magnitude [1]. In a one-dimensional phase retrieval prob-
lem, for example, the z-transform of any one-dimensional
discrete-time sequence of length N has exactly N — 1 ze-
ros (i.e., factors), so that any finite length sequences ob-
tained by flipping zeros have the same Fourier transform
mangitude. However, if we have & priori information that
the one-dimensional signal to be determined is minimum-
phase (i.e., has all its zeros and poles inside the unit circle),
then we can reconstruct the signal uniquely from its Fourier
transform magnitude [2].

In this paper, we consider the problem of enforcing
minimum-phase condition on an arbitrary one-dimensional
signal by adding a delta function having a large ampli-
tude. Then we consider the extension of the result to a
two-dimensional phase retrieval problem.

2. Enforcing minimum-phase
conditions on one-dimensional
signals

2.1. Enforcing minimum-phase conditions

We firstly show that, if we add a delta function having a
sufficiently large amplitude to an arbitrary one-dimensional
signal, then the added signal can be a minimum-phase sig-
nal. We begin with the following theorem.

Theorem 1 (3] Let z(n) be an arbitrary real causal finite-

support one-dimensional signal that has a minimum nonzero
region of support [0, N — 1], i.e., z(n) = 0 if n € [0, N — 1]
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with (0) # 0 and £(N —1) # 0, and y(n) be a signal that is
obtained by adding a point signal Aé(n) to the signal z(n),
t.e.,

y(n) = z(n) + Aé(n). 1)

IflAl > ZN_I |z(n)|, then the signaly(n) becomes a minimum-

n=0
phase signal.

To show what Theorem 1 implies, we present an exam-
ple.

Example I Figure 1.(a) is a 128 point original signal
and Figure 1.(b) is the zero plot of the signal (a). As we
can see in Figure 1.(b), some of the zeros are inside the
unit circle and the others are outside the unit circle. Thus,
this original signal is a mixed-phase signal (i.e., neither a
minimum- phase nor a maximum-phase signal). Then, we
add a delta function at n=0 whose amplitude is 100 which
is greater than the summation of the absolute values of the
coefficients, which is 57.1 in this case. Figure 1.(c) is the
zero plot of the added signal. As we can see, all the zeros
of this signal are inside the unit circle and therefore, this
signal is a minimum phase signal. ¢
2.2. Reconstruction
When a Fourier transform magnitude is given, there are
several ways to get the corresponding minimum-phase sig-
nal.

1. Hilbert transform

First of all, we can reconstruct the signal using Hilbert
transform [2]. It is shown that there is a Hilbert
transform relationship between the real part and the
imaginary part of a causal signal. Furthermore, the
cepstrum of any minimum-phase signal is causal and
therefore, the log magnitude of its Fourier transform
magnitude and its phase have a Hilbert transform
relationship [2].

2. Root finding
The second way is using a root finding algorithm.
Suppose we have a finite-length signal z(n) having

a minimum non-zero support [0, N —~ 1] and its z-
transform X(z) so that the zeros of X (z) are given

as z1, 22, *++, 2N-1. Then, X(z) is given as
N-1
X(z) = Z z(n)z™"
n=0
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N-1
= z(0) H(l —zz7h).

=1

From this equation, we can see that a signal can be
uniquely determined from all its zeros and the first
point z(0).

Now suppose that we have Fourier intensity of an un-
known minimum-phase signal z(n). From the Fourier
intensity (i.e., the square of the Fourier transform
magnitude) we can obtain the autocorrelation func-
tion of the desired signal z(n) which is given as

R:(z) = X()X°(z7)
N-1

l2(0)1* [ (1 - zz7")(1 = =0).

=1

Thus, if X(z) has a zero at z = z, then the z-
transform of the autocorrelation function has two ze-
ros at z = zo and the complex conjugate of its re-
ciprocal z = 1/z5. So, half of the zeros of R:(z)
are outside the unit circle, and the other half are in-
side the unit circle, which are exactly the zeros of
the minimum-phase signal. Furthermore, if the first
point z(0) is real and positive, this value can also be
determined from the equation above.

3. Gerchberg-Saxton algorithm

Another way is using a Gerchberg-Saxton algorithm.
This algorithm has a very simple structure (Figure 2).
When a phase retrieval problem is given, whether
this algorithm converges to the desired signal or not
has not been proved yet, however it has been shown
that the error between the given Fourier transform
magnitude and the Fourier transform magnitude of
the estimated signal is not increasing [4]. And many
experiments with the GS algorithm show that the
algorithm has a tendency that for a phase retrieval
problem having a unique solution, the estimated sig-
nal approaches the desired solution signal. Figure 3
is a comparison of the convergence properties of the
mixed-phase signal and the minimum-phase signal in
Example I after 10 iterations. As we can see in the
figure, the Gerchberg-Saxton algorithm converges to
the desired signal if the desired signal has a minimum-
phase property.

3. Extension to a two-dimensional
phase retrieval problem

3.1. Enforcing a minimum-phase condition

In this section, we consider the extension of the result in
Section 2. to a two-dimensional phase retrieval problem.
According to [5)], a two-dimensional minimum-phase causal
quadrant signal b(m, n) is defined as a causal signal whose
z-transform has the following property

B(z1,22) # 0 for {|z1] 2 1,]22| 2 1}.

A multidimensional minimum-phase signal may be defined
similarly.

First, we consider whether we can get a two-dimensional
minimum-phase signal by adding a delta function as we did
in Section 2.. We begin with the matrix

1 2 10 4
r= 2 3 4 5
10 4 5 6
4 5 6 7

Figure 4 is the zero contour of z as z2 moves along the
unit circle in the z2-plane (since the matrix is symmetric, we
don’t have to get the zero contour of 22 along the unit circle
of z;.). As we can see in the picture, this signal is neither
a minimum-phase signal nor a maximum-phase signal.
Then, we add a delta function having a large amplitude
at the origin. Since the summation of all the absolute values
of the signal is 77, we add 80, which is greater than the
summation. Then, the added signal y(m, n) is given as

y(m, n) = z(m,n) + 806(m, n).

Figure 4(b) is the zero contour of the signal y. As we can
see in the figure, all the zero contours are inside the unit cir-
cle and therefore the signal now became a minimum-phase
signal.

We can theorize this phenomenon into the following the-
orem.

Theorem 2 [3] Let z(m,n) be an arbitrary two- dimen-
sional signal that has the minimum nonzero support [0, M —
1] x [0, N — 1] and y(m, n) be a two-dimensional signal that
is obtained by adding a point signal AS(m,n) to the signal
z(m,n), i.e.,

y(m,n) = z(m,n) + Aé(m, n).
If @ positive real number A is given as

M-1N-1

A> YD le(m,n),

m=0 n=0

then the signal y(m, n) become @ minimum-phase signal and
can be uniquely specified from its Fourier transform magni-
tude.

3.2. Reconstruction

The main idea of the reconstruction of the signal satisfy-
ing the condition in Theorem 2 is that the two-dimensional
Fourier transform can be decomposed into the concatena-
tion of the columnwise and the rowwise one-dimensional
Fourier transforms so that the first row y(m,0)(for m =
0,---,M — 1) as well as all the columns §i’s (for k¥ =
0,1,--+,2M — 1) of the rowwise Fourier transform yx(n)
(for k =0,---,2M — 1) are minimum-phase by Theorem 1
(3], where 7 and yx(n) are given as

¥e = [yk((]), yk(l)’ yk(2)! oo, yk(2N - 1)]tv

and
2M—1

ge(n) = 3 y(m,n) exp{~jgrhm}.

m=0
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Obviously, the columnwise Fourier transform of

(50, 51, - -+ » F2m—1]

is Y (k, 1), the two-dimensional Fourier transform of y(m, n).
The algorithm to reconstruct the desired signal from the
given condition is as follows.

Algorithm

Step 1 Inverse Fourier transform columnwise all
the columns of the Fourier intensity |Y (k, )]*
to get the autocorrelation function of Fx
fork=0,---,2M — 1.

Step 2 Find all the zeros of each autocorrelation
function that are inside the unit circle and
lyx(0)17.

Step 3. Find the minimum-phase signal that has
[190(0)f, l91(0)?, - -, ly2na—1(0)I?] as its Fourier
transform intensity.

Step 4 Fourier transform the minimum-phase sig-
nal to determine yx(0)’s.

Step 5 For each column, form a polynomial colum-
nwise using the zeros obtained in Step 2
and multiply yx(0) columnwise to make
the signals yx(n).

Step 6-Inverse Fourier transform to get the de-
sired signal.

The following example shows how the algorithm works.
Example II Let y(m,n) be a 4 x 4 matrix that is ob-
tained from z(m,n) by adding 706(m, »), where z(m,n) is

given as
1 2 5 4 71 2 5 4
|2 3 4 s ]l 2 3 4 5
=3 4 5 6 |°'Y¥=| 3 4 5 6
4 5 6 2 4 5 6 2

Obviously, the magnitude of the point signal 70 is greater
than the summation of the all the absolute values of z(m, n),
which in this case is 61. Assume that we do not know the
signal y(m,n) but its Fourier transform magnitude, which
is given as

131 88 60 82 69 82 60 88
89 42 68 72 66 76 65 92
64 70 73 65 72 70 63 67
84 72 63 73 74 70 69 76
69 64 68 72 67 72 68 64
84 76 69 70 74 T3 63 72

64 67 63 71 72 65 73 70
89 92 65 76 66 T2 68 42

If we square the Fourier transform magnitude and inverse
Fourier transform it columnwise, then we get the autocorre-
lation of #x’s. Since we know that all the Fx’s are minimum-
phase, the zeros of the z-transform of §i’s are inside the unit
circle. The zeros of the z-transform of §o, #1, -, §s are as
follows.

.4485 4+ .5217¢

.0162 — .5121i
-.4911 + .1257¢

—.3095 + .2460¢
.3852 + .07224

.1793 — .6059¢ —.0464 — .3494i

-.5185
.1793 4 .6079¢
.0961 4 .3692i —-.3672
~.2605 — .0881i .1797 + .2785¢
1175 - 257848 1797 — 27854
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Also, |yx(0)|*’s are given as
[6724, 4927, 4360, 5244, 4900, 5244, 4360, 4927]. (2)
Since these values are the Fourier intensity of the minimum-

phase signal y(m, 0), we can find the zeros of the z-transform
of y(m, 0) and are given as

{-0.3306,0.1512 + 0.38414,0.1512 — 0.3841i}

as well as y(0,0), which is 71. If we form the polyno-
mial with the zeros and multiply it with y(0,0), then we
get the first row y(m,0), which is given as y(m,0) = 71 x
[1,.0282,.0704,.0563] = [71,2,5,4). Performing Step 4 to Step

6, we get
71 2 5 4
2 3 4 5
3 4 5 6|’
4 5 6 2

which is exactly the same as the original signal. ¢

As we can see above, because of the symmetry we only
need to solve N + 2 one-dimensional phase retrieval prob-
lems (N +1 columns and y(m,0)), where N is the number of
columns. If we switch columns and rows in the algorithm,
we can also get the same results with M + 2 problems,
where M is the number of rows. Thus, we can solve the
same two-dimensional phase retrieval problem by solving
min{M, N} + 2 one-dimensional phase retrieval problems.

4. Conclusion

In this paper, we considered the problem of enforcing minimum-

phase conditions on arbitrary one-dimensional signals and
its application to phase retrieval problem. Then, we ex-
tended this results to two-dimensional signals such that
we can make any two-dimensional signal have minimum-
phase property and, when we apply this to a phase retrieval
problem, we can solve the problem by solving several one-
dimensional phase retrieval problems.

In solving a phase retrieval problem, the off-axis holog-
raphy technique is a robust method in the sense that it
guarantees the unique solution all the time. However, this
method requires at least two times bigger support than that
of a typical phase retrieval problem for each dimension. For
a two-dimensional phase retrieval problem, for example, at
least 2 x 2 times bigger support is required than that of
a typical phase retrieval problem. The method presented
here, however, can not only solve the phase retrieval with
the same support as that of a typical phase retrieval prob-
lem but also can be implemented by the same technique as
that of the off-axis holography technique.
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Figure 1: Zero plot of a 128-point one-dimensional signal;
(a). a 128-point original signal, (b). Zero plot of the signal
(a), (c). Zero plot of the signal added by a delta function.

)

(b)
Figure 4: Zero-contour plot of (a) a two-dimensional signal
(mixed-phase) and (b) the signal added by a delta function
at the origin (minimum-phase)
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