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ABSTRACT
We examine a regularization technique for robust data
extrapolation based on the wavelet representation in
this research. We first formulate the regularization
problem and characterize the properties of its solu-
tion. Then, a practical iterative algorithm is proposed
to achieve robust extrapolation.

1. INTRODUCTION

The band-limited signal model has been widely used in
the past three decades [8], and band-limited extrapo-
lation has been extensively studied and applied in sig-
nal reconstruction [7]. Possible applications of signal
extrapolation include spectrum estimation, synthetic
aperture radar (SAR) imaging, limited-angle tomogra-
phy, beamforming and high resolution image restora-
tion. The performance of an extrapolation algorithm
is highly dependent on a proper modeling of the under-
lying signal. There are however signals which are not
band-limited such as nonstationary signals. Wavelet
theory has recently attracted a lot of attention as a
useful tool for signal modeling, and the multiresolu-
tion wavelet representation leads naturally to a scale-
limited signal model. To illustrate the additional mod-
eling power of the scale-limited model, we may con-
sider the following two examples. First, the cubic car-
dinal B-spline wavelet basis [1] spans a function space
whose elements are second-order polynomials between
knots and with continuous first-order derivate at knots.
Many practical signals can be well approximated with
such a function space. Second, time-localized wavelet
bases such as the Haar and Daubeches wavelets are
more suitable than the conventional Fourler basis in
modeling signals with interesting transient information
such as those arising from the electrocardiogram and
radar applications.

A new signal extrapolation technique based on the
wavelet representation, known as scale/time-limited ex-
trapolation, was studied by Xia, Kuo and Zhang [11].
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However, the extrapolated result may be unstable due
to the ill-posedness of the extrapolation problem, we
examine a regularization technique for robust data ex-
trapolation in this research.

2. PROBLEM FORMULATION

The scale-limited signal model is based on multiresolu-
tion analysis and wavelet theory. Consider a sequence
of successive approximation space P; of L?(R) satisfy-
ing,

- CP_2CP1 CPCP1CPs---,

with
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Let ¢(t) be the associated scaling function and we de-
fine ¢;k(t) = 29/2¢(27t — k) so that {¢;(t)},.7 is an
orthonormal basis of the wavelet subspace P;. The
mother wavelet function corresponding to ¢(t) is de-
noted by 9(t). Then, {¥;x(t) = 27/29(2t — k), j,k €
Z} forms an orthonormal basis in L?(R). For any
f(t) € L*(R), we have

(=] oo
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The projection fs(t) of f(t) in Py can be written as
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fi(t) = Z CJ,k¢Jk(t)=Z Z b kik(t). (2)
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We call fs(t) a scale-limited signal, since its wavelet
coefficients are zero for j > J.
We adopt the following norm notation

e = [ s,

—0oC
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and r
1@l = / lfoP.

The problem of extrapolating noisy data can be stated
as the recovery of a scale-limited signal f(t) € P based
on observed noisy data

g(t) = f(t) +n(t), te[-T,T)
where n(t) is zero-mean white noise with energy
A In@®llF < €.
We consider a constrained minimum norm solution in
P, i.e.

f= min |IfOI,

J(t)EPs
By using the Lagrangian multiplier, this is equivalent
to the minimization problem:

in (A2 + 2 (1F = gllZ - €)1}, (4)

where u is the regularization parameter. By using the
definition in [10, page 51], ||f||? is a stabilizing func-
tional and we call the solution of (4) a “regularized
solution”. )

We present some basic results to characterize the
regularized solution below. For more details, we refer
to [4] and [5]. In analogy with the band-limited time-
concentrated operator, we define the scale-limited time-
concentrated operator H as an integral operator which
maps f(t) € L2(R) to g(t) € L*[-T,T] via

it oo

> (/ f(s)bax(s) dS) oae(t) = 9(t), (5)
k=—o0 -

where t € [T, T] and ¢(t) is the scaling function. In
words, this operator projects the function f(t) into the
wavelet subspace P and then truncates the projected
function in the time domain.

Theorem 1 Let rg(t),k > 0, be the eigenfunctions of
the scale-limited time-concentrated operator with eigen-
value A; and

g(t) = D exri(t)

k>0

and ||If* —gliF <€ (3)

forte [-T,T).

Then, the regularized solution to the noisy extrapolation
problem is of the form

* /\k“ek ~
ro=2 (6)
ke K
where the reqularization parameter p is the solution of
Akei 2
P AL ™
1+ Aep)?
keK ( k)

Proof: See [5]

3. REGULARIZED ITERATIVE
EXTRAPOLATION ALGORITHM

The regalirized form as given in (6) in not practical
in numerical implementation due to the expensive cost
in computing the eigenfunctions and their correspond-
ing eigenvalues. It is therefore important to seek an
iterative method to compute the regularized solution
numerically. Based on the regularization theory [9], we
can adopt the following iterative process:

fo(t) =0. (8)

Initialization
Forn=0,1,2, -,
(1—a)fa+ap(g—Prfa), (9)
[ hse@stenas. 0

hoyi(t) =
fn+1(t) =

By using the eigenfunctions of the scale-limited time-
concentrated operator to analyze the above iterative
procedure, we obtain the following theorem.

Theorem 2 Assume that p is given and

OI<ax< 4
1 4—/1Ak

The iteration (8)-(10) converges to the regularized so-
lution in Theorem 2. That is, lim,o0 fa(t) = f*(2).

Proof: See [5].

One implementational issue is the computation of
the regularization parameter p required in (9). Note
that the choice of regularization parameter ¢ depends
on the noise energy. When noise is small, we need a
large p value so that the regularized solution will be
close to the observed signal. On the other hand, for
a larger noise level, we need a smoothness constraint
on the solution to stabilize the ill-posed problem. This
however reduces the accuracy of the regularized solu-
tion. Thus, the choice of an appropriate parameter
plays an important role in a regularization procedure.

To compute g with (7) is expensive since the eigen-
values of the scale-limited time-concentrated operator
are needed. Thus, we seek an approximating regular-
ization parameter close to the one given by (7). We can
express the regularized solution f(t) in (6) explicitly as
a function of g and t and examine
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Note that N{(x) and F(u) are monotonically increas-
ing and decreasing functions of p, respectively. The
continuous curve consisting of (N(u), E(s)), # > 0,
is called the L-curve. The importance of this curve
was first discussed by Miller [6]. Recently, Hansen and
O’Leary (3] used the L-curve to determine the regular-
ization parameter. It was shown in [3] that the L-curve
is concave and there exists a sharp corner on this curve
which gives the optimal regularization parameter.
Our idea to estimate g is to first determine its upper
and lower bounds and to obtain an initial estimation
based on these bounds. Then, we exploit the mono-
tonicity and concavity of the L-curve and apply a linear
search method. With this approach, a good approxi-
mation of g can be obtained by only a few iterations.

4. NUMERICAL EXPERIMENTS

Numerical examples are given below to illustrate the
performance of the proposed regularized extrapolation
algorithm. We use the orthogonal and compactly sup-
ported coiflet of order N = 10 [2] as the wavelet ba-
sis for signal modeling. The coiflet mother wavelet is
nearly symmetric around the y-axis so that the filter
bank implementation consists of almost linear-phase
filters. The high order of vanishing moments implies
the smoothness of the waveform and the compact sup-
port property makes the implementation easy. Con-
sider a scale-limited sequence z[n] generated by ran-
domly choosing the wavelet coefficients cjx with J =1
and —3 < k < 4 while setting other wavelet coefficients
to zero for the coiflet basis functions. A synthesized
clean signal observed at the scale J, = 4 is plotted in
Fig. 1. Then, the signal is corrupted by zero-mean ad-
ditive white Gaussian noise with SN R = 8 and we as-
sume that 81 (i.e. M = 40) observed noisy data points
are available as given in Fig. 1. In this experiment, we
avoid the signal modeling problem by assuming that
the scale-limited information is partially known a prior,
l.e. only ¢jx with J =1 and =3 < k < 4 are nonze-
ros and the wavelet basis is coiflet. However, the exact
values of these coefficients cjx are not known. The ex-
trapolated results by using the regularization approach
with the regularization parameter x4 = 10, 50 and 10°
are shown in Figs. 2-4. It is clear that for g = 10 we
have a oversmoothed result. In contrast, the solution
for pu = 10° is divergent and the case with g = 50 gives
the best result.

5. CONCLUSION

Compared with the regularized band-limited extrapo-
lation, the major advantage of this new extrapolation

3 T T T T T T T
Bolid ine < Observed:noisy datd : : :
| Dashed lins - Original sigoal - : : :

2 .. ............ .. .......... A e '. .......... -4

e
.....

Figure 1: Test Problem: the original signal and ob-
served noisy data with M = 40 and SNR = 84B.
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Figure 2: Extrapolated signal with regularization for
# = 10 in 200 iterations.
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Figure 3: Extrapolated signal with regularization for
u = 50 in 200 iterations.
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Figure 4: Extrapolated signal with regularization for
¢ = 10% in 200 iterations.
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approach is that it provides a large class of wavelet
bases for signal modeling while the regularization tech-
nique can still be easily incorporated to overcome the
ill-posedness of the extrapolation process. Since the
wavelet representation is time-frequency localized, the
model can be very flexible by adjusting the time and
scale parameters. It is particularly suitable for model-
ing nonstationary signals.
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