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ABSTRACT

In this paper, we show how successive projection-like
algorithms may be used for approximation or exact
modelling of a signal. For that purpose, we propose
a new efficient algorithm providing adequate linear dif-
ference equations satisfied by the original signal. The
projection operators at each step of the approximation
algorithm and the new procedure are shown to be or-
thogonal. Finally, a pyramidal structure summarises
the possibilities offered by the combinations of both
procedures.

1. Introduction

In this paper, we are interested in approximating se-
quences (discrete signals) by a finite sum of complex
exponentials on a compact interval. By exponentials,
we denote functions of the form z[n] = a\®, with
(a,A) € R? or €% The probabilistic approach of this
problem is classical in signal processing, in the case
where a priori statistics on the noise are given. The
deterministic point of view presents different difficul-
ties related to non linear optimisation. In recent pa-
pers (1], (2], [4], [6], [7]. New methods were presented
to solve the problem of approximation by sums of a
given number of complex exponentials. The problem
was formulated in terms of matrix approximation us-
ing the Frobenius norm. Then, a method of successive
projections was used and provided satisfactory results
(see [1], [7] and [6]). It was also shown in [5] that
a zero error modeling could be obtained for a certain
number of involved exponential functions. General re-
sults about successive projections algorithms may be
found in [3] and references within.

The aim of this communication is to present a gen-
eral framework for signal approximation and asymp-
totic zero error modelling by the means of successive
projections algorithms. First the approximation prob-
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lem is presented. Then we introduce a new algorithm
for finding an asymptotically exact model of the orig-
inal signal. Finally, a general framework is given for
signal approximation and modelling, using the struc-
ture of the classical successive projection algorithm.

2. The approximation problem

2.1. Preliminary remarks

Let us consider a finite sequence of data, s[n], n € IV.
Suppose that s verifies the following relation:

aps[n—pl+ap_1s[n—p+1]+---+aos[n] =0 Yne Z

(1)
with a, # 0 and ao # 0.

Let X;, i € [1..I] be the roots of the polynomial
p(z) = agz® + a12°~! + .-+ + a, with multiplicity e;.
Then the theory of finite difference equations states
that s is a linear combination of functions n**~1)\%,
sy AR, ey naz-l,\;t, o AT

Let us define the compactly supported sequence
a[n],n € N, by:

if nel0.p],
otherwise .

aIT @

Then Equation (1) is equivalent to
sxa=0 y (3)

where ‘0’ denotes the null sequence.
On a compact interval [a..b], equations (1) and (3)
are equivalent to the matrix equation:

a’S=0, (4)
with
sla]  sla+1] s[b — p
3 sla+1] sfb—p+1]
slatrl sy
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and
a’ =lap, -+, aq] .

2.2. Reduced rank approximation

As can be seen, the signal s can be written as a sum of
exponential or polynomial exponential functions of the
form n®*A™ iff the matrix S is not full rank. Of course,
in the general case, this is not verified, and the ma-
trix § must be approximated by a matrix with reduced
rank. A successive projection algorithm has been pro-
posed in [1], and further discussed in {2],[6], [7], which
provides an approximating matrix S, with neglectable
lower singular values. We may now briefly describe the
procedure for a better understanding of the new pro-
posed algorithms. The computation of the SVD of §
allows an orthogonal decomposition as follows:

P+l
S= Z oiu;vt (5)
i=1
with o1 > 09 > -+ > 0p41 > 0. Then,
S=E,+E,, (6)
with
h
E, = Z aiuivf
i=1
and
P+l
Z o-,-'u,-'vf
i=h+1

It is well known that E; is the projection of S on the
set of matrices of rank less than or equal to h, denoted
Red. An-iteration of the classical successive projec-
tions algorithm is complete when E; is projected on
the space of Hankel matrices, denoted Hankel. Finally,
we have the following procedure:

s®=s.
(7)
2.3. Equivalence with a null phase filter bank
Let s*) be the signal associated to the matrix S*),
(-k) the compactly supported sequence constructed like
a[n] in Section 2.1, and u{®* (n) = uﬁk)(p-i-? —n). Itis
shown in [4] that one iteration of the classical algorithm
is equivalent to the convolution Equation (8):

sk+D) Z u(k)

JE[l 7]

slk+1) = projHankel(projRed(S(k))) ,

)*s k) (8)

This remark will be of great importance in the rest of
the paper.

3. A new algorithm for zero error
modelling

In this section, we propose a new algorithm for asymp-
totically exact modelling. We first introduce the linear
projection operators used in the classical and the novel
procedure. Then, we present the complete algorithm
for zero error modelling and we study its convergence
properties.

3.1. Two well known orthogonal projection op-

erators
Let us define

U] :[ul,..‘,uh],

and
Uz = [6ht1,- - Upy1]

and their associated projection operators, defined for
any matrix M with adequate dimensions:

(M) =UUM ,
and
po(M) =U UM .
Since wuq,---,u, are the eigenvectors related to the

higher singular values, p, may be considered as an ap-
proximation operator, and obviously p, provides the
error of the approximation. It is straightforward to
see that range(p,) and range(p,) are two orthogonal
spaces. Using this notations, indexed by the iteration
number k, the classical algorithm can be rewritten:
s(k+1)

= projuanka(p{” (™)), §© =5 (9)

3.2. The new algorithm
The new algorithm aims to find a compactly supported
sequence a[n], n € IN which vanishes when convolved

with s[n], n € IN. For that purpose, instead of using

the approximation operator pgk), at iteration (k), we

(k)

use the orthogonal operator p; . In this case, we have:

z® =5
(10)

Z(k-H) = projHankel(pgk)(Z(k))) 3
We then obtain the following proposition:

Proposition 1 the algorithm, as defined above, con-
verges to the null matriz and the Frobenius norm of
the matrices Z*) decreases exponentially.

Proof:
Let ||.]| denote the Frobenius norm of matrices. It
is well known to write

|z =

POREAGE

i€[1,p+1]
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where the oZ(k) are indexed in the decreasing order.
Now we note that

”p(k) Z(k))”

DORRALE

i€[h+1,p+1]

which implies that
<cPtl-n +1-

2@ < 22 2]
”p Tp+1

Knowing that a consequence of the projection of
pgk)(Z (])} on the space of Hankel matrices is that

[2%+9] < [#2*)]
we obtain

|z < B 2]
p+1

This also equivalent to

x
”Z(")“ < <p+1—h)z
- p+1

which ends the proof . O

]

Due to the equivalence of such algorithms with filter
bank processing, we obtain after K iterations:

2K = fE) 4 L0 (11)

where
fE)[n], n € IN denotes

K-1 K-1)»
fE) = (jetht,...pt1 “J(' )*”5' ) ) *
0 (0)=
* (Ljether,. pr1] %5 *¥Y5 )

(12)

Then, Proposition 1 implies that, after a sufficiently
high but finite number of iterations, the original signal
nearly belongs to the kernel of a discrete convolution
operator involving a signal with cémpact support. We
can consequently approximate the original signal by a
linear combination of exponential functions.

As shown before, the exponential functions are the
zeros of F(¥)(z), the z—transform of f(*). The coeffi-
cients of these exponentials may be computed using a
least square method.

4. A pyramid of approximation/zero
error modelling
The existing projection algorithms combined with the

one described in this paper offer multiple possibilities
for signal modelling:

1. successive approximations of the original signal
by considering the largest singular values of the
Hankel matrix associated to the signal,

2. construction of filters with compact support for
zero error modelling by considering the lowest
singular values.

PN
SN N

path #3 path #2

path #0

path #1

Figure 1: pyramid of approximation/zero-error mod-
elling

The possibilities proposed are represented in the
pyramid of figure 1: / represents an iteration using

the projection operator pgk) and *\, represents an iter-

ation using the projection operator p(Zk). In fact, path
number & involves k iterations of the signal approxi-
mation algorithm whereas the number of iterations of
the zero error modelling procedure is the same for all
paths.

This pyramid shows that successive projection al-
gorithms may be used for both signal approximation
and/or zero-error modelling.

5. Simulation results

The algorithm for zero-error modelling is applied to
the signal in Figure 2, following path number i. The
SNR is given in Figure 5, as a function of the iteration
number, in the case where all the exponential functions
are kept. Then, we show the SNR after 10 iterations
of the exact modelling procedure, for several pathways.
Thanks to S. Mallat’s matching pursuit algorithm [8]
only 100 functions are selected for reconstruction. The
results are given in Figure 4. It has been observed that
results are improved if the approximation algorithm is
applied before the exact modelling procedure. The best
reconstructed signal was obtained using path 7 with
only 100 functions kept, as shown in Figure 3.
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Figure 2: original signal.

Figure 3: best reconstructed signal (path number 7,
100 functions kept).

Figure 4: SNR(dB) vs path in the pyramid (100 func-
tions kept).

Figure 5: SNR(dB) vs iteration number using path
number 1 (all functions kept).
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