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ABSTRACT

The generalized sampling theorem states that any analogue
signal whose spectrum is limited to 1/T can be exactly re-
covered from N sequences of samples taken at a rate 2/NT
and all having a different sampling phase. When N = 2,
the exact interpolation formula can be derived quite eas-
ily. The ideal interpolation filters have infinite impulse re-
sponses. This paper addresses the theoretical question of
recovering from the 2 initial sequences, any other sequence
‘taken at the same rate 1/T and with a different sampling
phase. FIR filters optimized for a mean squared error crite-
rion have been derived [5]. In the present paper, FIR filters
are derived for a least square interpolation error. Moreover,
‘an adaptive implementation is proposed and formulated as
a Kalman algorithm. Simulation results obtained for AR
‘processes show the effectiveness of the solution compared to
static solutions.

1. INTRODUCTION

The sampling theorem states that any signal whose spec-
trum is limited to f = 1/T can theoretically be exactly re-
covered from a sequence of samples taken at a rate greater
than f, = 2/T [2, 3]. The analogue signal recovery requires
filtering the sequence of samples with an infinite length sig-
nal. This result is known as the Whittaker interpolation.
The sampling theorem can be extended [2, 4]. It can be
shown [2] that a signal whose spectrum is limited to 1/T
can be theoretically exactly recovered from N sequences of
samples taken at a rate 2/NT and all having different sam-
pling phases. In particular, when N = 2, the exact formulas
show that as in the Whittaker method, the 2 filters the 2
sequences have to be interpolated with, have infinite dura-
tion. It happens [1, 5] that one knows a sequence of samples
for some locations or some values of the time (or space),
and that one wants to know the signal at other instants or
locations. This is a resampling problem. In [4], polyphase
structures for the reconstruction of a band-limited sequence
from a non-uniformly decimated sequence are derived. In
this paper, we deal with a one-dimensional situation; it is
assumed that we know 2 sequences resulting from sampling
with the same rate 1/T and different phases, a signal whose
spectrum is limited to 1/T. Thus, each one of the 2 se-
quences taken individually suffers from aliasing. Neverthe-
less, this aliasing can be completely removed by adequately
combining the information of the 2 sequences. We deal with
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the generalized interpolation problem, which is to find from
the 2 initial sequences a third one taken at the same rate
but with another sampling phase. These 3 phases can have
any value as long as they are different. The 2 ideal filters
have infinite length impulse responses. However, in many
practical problems, it is required to have finite length im-,
pulse response filters. In [5], the problem has been solved
for a2 minimum mean squared error. In the present paper,
we analyze the problem of designing FIR filters which min-
imize the least square interpolation error [6]. Such a design
takes into account the data itself rather than statistical ex-
pectations. Besides, adaptive structures can be derived and
an extended version of the standard Kalman algorithm will
be proposed. Explicit sclutions are provided for the 2 sets
of coefficients.

2. PROBLEM DEFINITION

We denote by z,(t) the analogue signal, by z,(t), its sam-
pled version, and by z(n), the corresponding sequence.
Sampling a signal z.(t) with a period T and a phase T}
provides a signal given by :

z.(t) = i z (kT +T)6(t— kT —T1) (1)

h=—o0

The frequency in radian used for analogue signals is denoted
by w and the spectrum of sequences is a periodical function
of 0 (period 27). The signal z,(t) has a spectrum given by

X(w) = % Z exp 2 TUT o (w — 2nk/T)  (2)

k=-—oc0

We can establish a relationship between the signals z,(t)
and z(n), by requiring that

z(n) = z,(nT+ T1) (3)

The correspondence between the 2 spectra X,(w) and X ()
is given by : )

X(0) = exp™® /7T X, (w) (4)
and @ = wT. We assume to have a signal z.(t) whose
spectrum is limited to f = 1/T. We also know 2 sampled
versions of this signal, denoted by z,,,(t) and 23 ,(t). These
signals result from sampling z.(t) with a rate 1/T and re-
spective phases 77 and 73. We want to find the filters to be
applied on z, ,(t) and z3,,(t) in order to find z3,(t) which
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corresponds to the sampling of z,(t) with the rate 1/7 and
a sampling phase T3 different from 7T} and T3. The solution
to recover z, from z,,, and z3,, is given by [7] :

zo(t) = [aw(t)+a’w™(1)] ® 21,4(t)
- (Bt + 8w ()] ®z2u(t)  (5)

where ® stands for convolution, * denotes complex conju-
gation and a and v are defined by

*i(T1~T2)/T
a Texp™” 2~ (6)
2jsin [x(T1 — T2)/T)
*i(T3~T1)/T
g o= Lo ™
27 sin [x(Ty — T2)/ T}

The impulse responses of the 2 filters are given by :

exp’™*/T sin (xt/T)

v = = )
- _ exp~i™/T sin (xt/T)
wi(t) = =P T (9)

These 2 filters w'(t) and w™(¢) pass only frequencies be-
tween [0,1/T] and [—1/T, 0], respectively. We can further
assume that the 2 interpolation filters come from the modu-
lation of a same lowpass prototype filter. The 2 filters w™(t)
and w™(t) are then obtained by shifting on the frequency
axis a same transmittance W(w). We then have :

WT(w) = W(w+wo) (10)
WHw) = W —uwo)
with wo = x/T. The sequence za(ks) = za(ksT + T3) is
given by :

-]

za(ks) = Z z1,, (ki T+ T1)
ky=—o0
9 sin[m(kaT +Ts — kv T ~ To)/T)

sin [x(T1 — T2)/T]
X w(k3T+T3 —le-—Tl)

- Z z2,:(k2T + T2)
ha=—oo .
% sin [T(k3T+Ta —sz—Tx)/T']
sin [T(T1 — Tz )/T]
X w(k3T+T3 —-sz-—Tz) (11)

This is the exact interpolation formula, which shows that
in the ideal situation, infinite impulse response filters have
to be used.

3. LS OPTIMIZED FIR FILTERS

LS designed filters minimize the least squared error between
the desired interpolated signal and the approximated ver-
sion. According to the results of the previous section, one
can write that the desired signal has a spectrum given by :

Xoo(w) = X.(w) [aWi) (W) +a Wi, (w)]
= X () [BWE (W) + 8" W5, (w)] (12)

where the subscript (3,1, s) means sampling with a phase

T3 ~ T:. Equivalently, we have about the spectra of se-

quences that :
A(AQ) = () (@Wa (2 -7)

(6 +8 ) (MWs2(0 - 7) (13)

where W;,;(€) denotes the spectrum of the sequence pro-

duced by sampling the impulse response w(t) = sinc(xt/T)
with phase T3 — T;. The values of v and § are given by

T exp™i(Ts=T2)/T "
T T sin[(T - T2)/T)] (14)
*H(Ts~T1)/T
- Lexe (15)
27 sin [x(Ty — T2)/T)

We want to find £ approzimation filters, or polyphase com-
ponents, denoted by 1Ws,1 (n) and W3 2(n) which minimize the
least squared interpolation error. The objective function to
be minimized is given by

1

J= ) £(0) £*(Q)dA (16)

-_—

The error spectrum can be written as :

£(Q) aXy(Q) [Wsa(Q =) — Wi, (Q - 7))

bA3(Q) [Wa2(Q = 7) = Wa (2 — )] (17)

where W;,,'(Q) is the approximated version Wi ;(Q2). We
also have :

— — Py Py2 W"l
J = [ W;f.‘l W:;I,‘z ] [ L - 29%% P32 ] [ mﬂ ]
= e B, d
+ [W;,J. Ws,z] B, + ()

where
L{ea=v+~",b=6+8%)

2. Wa,; is a vector with the ith optimized impulse re-
sponse,

3. ®,, is a symmetrical matrix whose element (3, 7) (i,7 €
[-N,N] for impulse responses evaluated in 2N + 1
points) gives the valuein n = i—j of (~1)" aa*¢., (nT)
and ¢., (nT) is the correlation function of the pro-
cessed signal,

4. ¥, is a symmetrical matrix whose element (3, j) gives
the value in n =i — j of (~1)"bb" ¢, (nT).

5. ®,,2 is a matrix whose element (i,j) gives the value in
n=1—jof —ab*(-1)"¢ (—nT —- T3 + T1).

6. ®2 is a matrix whose element (%, j) gives the value in
n=1i~7jof —ba*(-1)"¢, (—nT - T1 + T2).

7. B, is a matrix whose element n € [-N,N]
is —2aa*(—1)*[(-1)"ws1(n) ® P=.(nT)] + (a*b +
ab*)(=1)"l(~1)"ws,2(1) ® $ae (nT + Ts — T1 )]
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8. B, is a matrix whose element n € [-N,N]
is =200 (—1)"[(~1)"ws2(n) ® ¢=.(nT)] + (a*b +
ab*)(-1)"*[(~1)"ws 1 (n) @ ¢ (nT + T1 — T3)].

9. d is a constant computed by evaluating

(~1)*Cuw(n)] ® [sa’¢a,(n)+bd ¢ay(n)
+  ab oo (n) + da"daygs, (n)]

for n = 0 where

(a) Cuww(n) is the deterministic correlation function of
the objective filter w(n) resulting from sampling
w(t) with phase Ty,

(b) ¢=;(n) is the correlation function of z;,

(c) ¢a;2;(n) is the cross-correlation function of z: and
z;j.

By requiring that the derivatives of J with respect to Wg,l
and Wy 2 be equal to 0, we find that the optimal solution is

given by :
®$,, + <I>ﬂ &, + &7, ?3.1 - -B, (19)
By + BT, Pay + 2L Wi,z —Bz

It should be mentioned that the 2 vectors W3,1 and

Wa,z provide the adequately sampled versions of w(t)
but not the complete impulse responses. As it can
be seen from equation 11, additional factors equal to
sin [x(kaT + Ts — kT — T;)/T) / sin [x(T2 — T2)/T] have to

be taken into account.

4. RECURSIVE ALGORITHM - KALMAN
EXTENSION

In the previous section, a static solution has been obtained
for the FIR filters. Actually, filters can be derived for a
recursive approach as well. In a Kalman approach, the ob-
jective function to minimize is

N

J(N)=> e (n)AV " (20)

n=1

where N is the number of data available and A < 1is a
forgetting factor. The error signal can be written in a vector
form

e(n) = z3(n) ~ Wey (N)X1(n) — Wi (N)Xa(n)  (21)

where z3(n) is the target point, W,Tl(N) is the optimal
impulse response to be obtained from the N data, and

Xi(p) = [zi(p = K),- -, zi(p), -, zi(p + K)T  (22)

where 2K + 1 is the filter length. By taking the derivatives

with respect to the ’W?,T‘(N) and forcing them to be 0, one
obtains a set of linear equations :

[ ¥, (N) ¥.2(N) ] [ EV},:.(N) } - [ B (N) ] (23)
W2 (N) ‘Ifzz(N) Wi2(N) Ba(N)

or equivalently

W(N)W(N) = B(N) (24)
where ¥;;(N) = Z“N__ﬂ AN Xi(n)X](n) and B; =
EN . A¥"™z3(n) Xi(n). We therefore also have

W (N) = A0;(N — 1)+ X:(N)XT(N) (25)
and we can use the matrix inversion lemma
TUN) = ; (e (v -1)

¥YN - 1) X(N)XT(N)®~H(N - 1)
A+ XTE-I(N —1)X(N)

(26)

where X(N) = [XT(N),XT(N)]. A Kalman algorithm
can now be defined. It will be omitted for the sake of con-
cision.

The method has been tested as follows. An signal has
been produced by means of an AR Markov process with
/0.9 as correlation. This signal has been lowpass filtered
by means of an ideal lowpass filter with 0.235 as cutoff fre-
quency (1 referring to half the sampling rate). An 8-fold
downsampling consequently provides a sequence with alias-
ing as considered in the present work. The algorithm has
been tested for T} = 0, T3 = 0.25 and T3 = 0.875 and for 7
taps for each polyphase component. The forgetting factor
has arbitrarily been set to 0.99. The results are as follows.
All curves give the absolute value of the relative error ver-
sus the sample position. The error is the difference between
the interpolated value and the ”true” value which can de-
rived by downsampling the output of the process with phase
T3. Figure 1 is obtained for the Kalman algorithm with a
windowed version of the ideal filters as a start. Figure 2 is
obtained with static filters provided by windowing the ideal
interpolation filters and figure 3 is obtained by means of the
MMSE designed filters proposed in [5]. The sum of squared
error is 0.1411 for the first curve, 1.2981 for the second and
0.2133 for the third one. However, when the number of taps
goes down, the difference between the methods associated
with figures 1 and 3 decreases slightly.

5. CONCLUSIONS

This paper has been devoted to the problem of interpolation
in the context of periodical nonuniform sampling. Ideal in-
terpolation filters are of the infinite impulse response type.
In this contribution, finite impulse response filters have been
derived for a least square criterion. Moreover an adaptive
implementation has been obtained in the form of a Kalman
algorithm. Simulations results performed for signals pro-
duced by a first-order Markov process show the effective-
ness of the method. The adaptive method outperforms the
windowed ideal filters or those derived for an MMSE crite-
rion.

Future work will be devoted to how incorporate such a
method in a motion compensation scheme for coding inter-
laced images.
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