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ABSTRACT

In this letter, we shall describe
interpolation of low pass signals from a
class of stable sampling sets at half the
Nyquist rate. Practical reconstruction
algorithms are also suggested.

1. INTRODUCTION

Practical signal recovery from nonuniform
samples at rates above the Nyquist are
known and are discussed in the
literature[11,[2],[3]. Although it was
known that nonuniform samples at rates
below the Nyquist rate is possible[2],
issues such as stability, interpolation, and
practical reconstruction techniques have not
been addressed. In this letter, we shall
discuss a class of stable nonuniform
samples at rates close to half the Nyquist
rate. We will develop formulas based on
Lagrange interpolation and suggest
practical methods for recovery.

2. CHOICE OF SAMPLING SET

The analytic signal for a low-pass signal of
bandwidth W is defined as

x,(8)= () +j¥@)= A@exp(i0(®)] )
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x(?)

tan 0(f) = (2)

The nonuniform points are chosen such
that

*t,) sin wyf, = (@) cos wyt; , for
KeZ (3)
where @, is an arbitrary frequency, which
determines the sampling rate. In case the
sampling rate is higher than half the
Nyquist rate, a subset of samples are
chosen such that we get W samples on the
average, i.e., half the Nyquist rate. For
example, if 2f/w = N, where N is an
integer, then every N" crossings is chosen
to satisfy half the Nyquist rate. Eqn(3) is
equivalent to the zero-crossings of the
single side band modulation of x(z). From

(2) and (3), we have

keZ
(4)

Deviation of nonuniform points from
uniform positions (¢, - kT, where T is the
sampling interval) decreases if @, is taken
to be very large and every [2fyw]
(rounded up) sample is chosen. This fact
implies that the nonuniform samples are
well behaved and can be stable.

0(t) = Wyt + kn

If the analytic signal in (1) is shifted to the
left by W/2 in the frequency domain, we
derive the low pass equivalent signal:
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where £ is the Hilbert transform of x(2),
A(t) is the magnitude (envelope) and
x, (0 = x,(e I = x(0) + xS0 =

= A(t)e/*® &)

where x; and x, are real in-phase and
quadrature signals of bandwidth w/2, and
o(t) from

(1) and (5) is

¢ = 0@ - wr ©

From (4) and (6), we derive ¢(t,) from t

o) = oy, + kn-nwr, @)

From (5) we have

x(t) = A(t)cos &, =

= (-1)*A(t) cos(w,~TW)t, 8.1

%) = Agsin &, =

(-1)*A(tp) sin(w,-nw)e,

If the sampling rate satisfies half the
Nyquist rate, from (8), x(t) and x,(t) can
be recovered from A(:) since their
corresponding bandwidths are w/2. As a
result X,p(1) can be recovered from (5). x(1)
can then be recovered from x,(1), viz.,

(8.2
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x(t) = Relx,(ne/™] )

Thus signal recovery from half the
Nyquist rate is possible in principle.

3. LAGRANGE INTERPOLATION

The above discussion can be formulated
in terms of Lagrange interpolation,i.,e.,

X0 = ;x,(t,,)w,,(t) + j); x 69,0
(10)

In (10), the sampling rate (r)is assumed to
be greater than half the Nyquist rate (r 2
w), and Y, (t) is the Lagrange interpolation
given by

H()

) = ———,
0 H(t)(e-t)

(11)
H() = l;I(t -t

The convergence of (10) is guaranteed
from the discussion after eqn (4) from the
fact that a sufficient condition for the
convergence of Lagrange interpolation is
|t kT F<T/4, [2].

From (5),(7),(8) and (10) we have

50 = X -DH4E) g

(12)

From (9) and (12) we have



0 = ; (-1A¢) cos[rw(t-t) + WefJ¥, ()

(13)

The above formula is the implicit
interpolation from nonuniform samples.
To derive an explicit interpolation
formula, we use (4), (1) and (13) to getan
interpolation in terms of

x(t,) and  R(2p).

x(t)= Y x(tcos[mw(t -t ¥y() -
k
- Z‘Zf(f:) sin[nw(z-£) V()

(14)

The implicit formula can then be derived
from (2), (4) and (14),i..e.,

2 = 5) tan(wg)
and

cos[nw(f-1) +wt,]
cos[wyt,]

x(@0)= Y x(t) ¥,
k
(15)

In case cos (W,2,) = 0, from (3), we know
that x(,) = 0, and

x(t) | cos(agy) = #(5) | sin(gy
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The above equation implies that (15) does
not blow up and is well behaved.

In practice, we can recover x(t) and x(t)
from nonuniform samples using iterative

techniques[1],[3] and[4] . x(¢) can thus be
recovered from (9). Iterative techniques
are guaranteed to converge if the sampling
set is stable and the sampling set {t,} is
operating at rates above w samples/sec
(half the Nyquist rate for x()).

Conclusion

We developed a class of nonuniform
samples at rates close to half the Nyquist
rate. Iterative techniques can be used to
recover a low pass signal from the
sampling set.
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