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ABSTRACT

A new procedure for the minimax estimation of quadratic

functionals of signals is described. The estimates are
optimum when the signals satisfy a quadratic constraint,
a common assumption made for estimation of linear
functionals. The method will, for example, provide
best minimax estimates of signal energy in a time-
window and of pointwise evaluations of Fourier trans-
form magnitude, in contrast to earlier methods, which
first obtain optimum minimax estimates of linear func-
tionals, and subsequently form a suboptimum quadratic
estimate by evaluating a weighted sum of the squared
linear estimates.

1. INTRODUCTION

Several problems in signal processing involve estimat-
ing quadratic functionals of a signal. Examples include
the estimation of signal energy in a time-window, esti-
mating the magnitude of the Fourier transform of the
signal, or the estimation of semblance for geophysical
applications, [1]. The usual procedure is to find op-
timum estimates of a set of related linear functionals,
and subsequently to form an estimate of the quadratic
functional by evaluating a weighted combination of the
squared linear estimates. Even though optimum es-
timates of the underlying linear functionals are used,
the resulting estimate of the quadratic functional will
in general be suboptimal. The procedure described
here estimates quadratic functionals optimally, under
the hypothesis that the class of signals that are ad-
missible for estimation satisfy a quadratic constraint.
The quadratic constraint assumption made here for es-
timation of quadratic functionals is one that is usually
made for minimax linear estimation [2-6], and has some
physical basis in geophysical applications.

The example of signal interpolation illustrates the
difference between estimating linear functionals and
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estimating quadratic functionals. The interpolation
problem may be viewed as one of estimating a miss-
ing sample z(n) of a signal z, given known samples
z(k;),t = 1,...,M. The procedure used to estimate
z(n) depends on the a priori assumptions made. We
confine ourselves to a common hypothesis, also made
in [2-6], that the unknown signal satisfies a quadratic
constraint, described more fully below. The optimum
minimax estimation of a single linear functional, such
as the missing sample z(n), under such a hypothesis,
is a well-known procedure described in [2]. The same
procedure applies to joint estimation of a collection of
general unknown linear functionals, z;,7 = 0,..., M,
(or a general linear transformation of the signal): ex-
amples of more general linear functionals include the
real and imaginary parts of the Fourier transform of
z, evaluated at a particular frequency. The question
addressed in this paper is the estimation of |z(n)|?,
or Y .lz:|®. Such quantities are quadratic function-
als, e.g., the sum of squared time-samples in a win-
dow, 3. _, |z(n)|?. Another example is the magnitude
squared of the Fourier transform evaluated at a partic-
ular frequency, which is the sum of the squares of the
real and imaginary parts. One procedure to estimate
>, lz(n)|? is to compute estimates of each individual
z(n) and then to form the sum of the squares of the
estimated linear functionals. While each individual es-
timate of z(n) may be minimax optimum, the estimate
of the quadratic sum Y |z(n)|? need not be optimum.
An alternative procedure, described here, is to seek op-
timum minimax estimates of the quadratic functional
directly.

2. REVIEW OF LINEAR ESTIMATION
Optimum minimax estimation of linear functionals is

briefly reviewed: further details may be found in [2-4].
Figure 1 illustrates the abstract setting for the problem,
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[3] and uses signal interpolation as an example. The
signal z is assumed to belong to an inner-product space
X. For the interpolation problem, the signal z might
be assumed to be the output of a band-limiting filter
H, and the inner-product might be the usual L? inner-
product. The known measurements are a collection of
linear functionals evaluated at z: these form a vector
y in a ‘data space’ Y. They may be viewed as the
result of applying an information operator I to z, so
that Iz = y. In the interpolation problem, the vector y
consists of the known samples of the signal. It is desired
to estimate a real linear functional of z, denoted Uz,
given the known measurements y. The estimate may
be viewed as applying an approximation operator A to
the known data, to obtain an estimate Ay. The signal
interpolation example requires an estimate of a missing
sample of z from the known samples of z.

More generally, it may be desired to estimate an
arbitrary linear transformation of z, lying in some vec-
tor space Z. This may equivalently be viewed as joint
estimation of a collection of real linear functionals of z,
the coordinates in some basis for Z. For example the
estimation of complex linear funetionals is equivalent
to joint estimation of the real and imaginary parts.

To pose the estimation problem it is necessary to
make some additional hypotheses about the signal z.
The assumption made here is that z belongs to an ellip-
soid in the inner-product space X. This is a quadratic
constraint since it is a bound on a weighted sum of
squared coordinates, the coordinates being the coeffi-
cients that result from expanding the signal in some
family of basis functions. Such constraints arise for ex-
ample in geophysical applications: the constraint may
reflect the finite energy that a capacitor supplies to a
transducer exciting a sound pulse propagating through
a rock formation to an array of recording sensors. For
the signal interpolation problem, this constraint arises
by assuming that the signal z is the output of a band-
limiting filter H, whose inputs have bounded energy,
as shown in Figure 1.

The quadratic constraint assumption for the signal
class leads to a special geometry, illustrated in Figure 2.
The ellipsoidal class, K, comprises the signals that are
admissible for estimation. The known measurements of
linear functionals, i.e., the linear constraints, require
that the unknown signal must also belong to the hy-
perplane Iz = y in the signal space X. Thus the signal
z lies in intersection of the hyperplane and the ellip-
soid, which we call the hypercircle C(y): as the known
measurements y vary, the hyperplane moves around,
changing the hypercircle C(y). It can be shown [3,4]
that the hypercircle is of the form

Cly) =Ty +[1-I"Y|*(FNK) (1)

lhall, < 1

Figure 1: General setting for the estimation problem
Hyperplane Ix = y

N
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Figure 2: Geometry of the problem

In (1), F is the null space of the information operator
I: the subspace of signals z for which Iz = 0. Further-
more I !y denotes the minimum norm signal satisfying
Iz = y. A key property of C(y) is that it is a translate
of FNK, a convex and balanced set: “balanced” means
that if z belongs to F'N K, so does —z. It follows that
I~ly is the center of the hypercircle in the sense that
it minimizes the maximum distance over all points in

C(y): .

sup |[I7'y -zl = inf sup |z’ -zl (2)
z€C(y) X zec(y)

As z varies over the hypercircle, a real linear func-
tional of z, Uz ( e.g., a time-sample z(n)) assumes a
range of possible values, illustrated in Figure 3. This
range of values is an interval. The optimum minimax
estimate for Uz, which is a functional of the data v,
denoted Ay, is the center of the interval: it is optimum
in the sense that it minimizes the maximum possible
error over all values that Uz can possibly take:

mf sup |z —Uz|
Zzec(y)

sup |Ay —-Uz| =
z€C(y)

The geometry of the problem makes the computa-
tion of the optimum estimate of Uz simple. The op-
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Figure 3: The range of possible values for real linear
functional Uz as z ranges of the hypercircle C(y)

timum minimax estimate is U(I~'y), a simple conse-
quence of the following observations. Linear transfor-
mations map convex balanced sets to convex balanced
sets. Applying U, a linear transformation, to (2) shows
that UC(y) is also a translate of a convex balanced set,
with center UI"'y. Thus U maps the center of C(y)
to the center of UC(y). In particular, when U is a lin-
ear functional, the set of values U(F N K) must be an
interval on the real line, centered on zero, and UC(y)
is a translate of this interval, centered on UI~1y.

3. QUADRATIC ESTIMATION

We now consider estimating quadratic functionals of
the form ||Uz||%, where ||-||z denotes an inner-product
norm on Z. The examples of signal energy in a window,
and squared-magnitude of the Fourier transform are
special cases of this general form.

We first characterize the range of values that ||Uz||z
may take: this is an interval. The optimum minimax
estimate is the center of the interval.

The ellipsoid K is of the form:

K=A{z:(z,z) <1}

The set F'N K, the intersection of the subspace F with
the ellipsoid K, is also an ellipsoid in F":

FNK={zeF:(P'z,P 'z)<1}

where P denotes the projection operator from X onto
F, and P! : F — X is the pseudo-inverse, which is
positive-definite on F'.

The image of F'N K in the inner-product space Z,
U(F N K), is also an ellipsoid:

UFNK)={z: (P U2, P7IU2) <1}

where U~! is the pseudo-inverse of z. The operator
(UP)~! is positive definite: if P~1U~1z = 0, then
U~'z =0, since P! is positive definite, and UU !z =
z=0.

The maximum value that ||Uz||z may take is the
maximum of a quadratic form, subject to a quadratic
constraint:

llz+UI |z
(3)

max ||U =
J:EC(y)“ zl|z

max
((UP)=1z,(UP)~12)<1
There is a similar form for the minimum.

Quadratic maximization/minimization problems of
the form (3) have been considered in [7,8]: we use this
work to evaluate the range of values that {|Uz||z may
take, as = varies over C(y).

There are two cases to consider. When UC(y) con-
tains the origin, the minimum value that ||Uz||z may
take is 0. The maximum value of ||Uz||z is found by
applying the work of {8] to (3). When UC(y) does not
contain the origin, then both the minimum and maxi-
mum must be found.

Once the extreme values for the range of ||[Uz||z
have been found, the optimum minimax estimate is the
average of the maximum and minimum values. It is an
optimum minimax estimate because it is the point that
minimizes the worst-case Z distance over all possible
values of ||Uz||z.

4. EXAMPLE

A simple example illustrates the differences that may
arise between the optimum minimax quadratic esti-
mate, and forming an estimate from minimax linear
estimates. The problem considered is one of estimat-
ing two consecutive missing samples of a length-6 sig-
nal. In addition it is desired to estimate the sum of
the squares of the two samples: the signal energy in a
length-2 time window. The unknown length-6 signal is
assumed to belong to an ellipsoidal class, determined
by a quadratic form based on a positive definite sym-
metric Pascal matrix.

Figure 4 shows the interpolated signal, where the
unknown time-samples at indices 3 and 4 have been
estimated using optimum minimax estimation for lin-
ear functionals. Also shown are the error bars for the
unknown samples: these are indicated by the dotted
lines.

Figure 5 shows the image of the hypercircle in the
space spanned by the two samples, UC(y). It is the
area bounded by ellipse B. The center of ellipse B is
the intersection of the major and minor axes: it is the
length-2 vector whose entries are the optimum mini-
max linear estimates. Any point in ellipse B represents
a pair of possible values for time-samples 3 and 4, given
the known samples at indices 1,2,5,6, and the quadratic
constraint. The corresponding energy is the squared-
magnitude of the length-2 position vector. Since the
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Figure 4: Interpolated samples at indices 3 and 4, with
error bars

origin is contained in ellipse B, it is possible for both
time-samples 3 and 4 to be simultaneously zero: thus
the minimum possible energy in the time-window is
zero. The maximum possible energy is achieved by the
point of ellipse B that is furthest away from the origin.
This is the point of tangency between circle A and el-
lipse B, as shown in Figure 5. Circle C has radius equal
to the average of the maximum and minimum possible
lengths of vectors lying in ellipse B. Its radius, 0.299, is
thus the optimum minimax estimate of the square-root
of the energy in the time-samples 3 and 4. This is to
be contrasted with the square-root of the energy in the
minimax linear estimates, 0.037, which is the length
of the position vector of the center of ellipse B. These
two estimates differ by nearly an order of magnitude:
the percentage error, expressed as a percentage of the
optimum estimate, is 87 %.

5. CONCLUSIONS AND
ACKNOWLEDGEMENTS

Optimum minimax estimation of quadratic function-
als has been described. A simple example shows that
the estimates provided by the new procedure may dif-
fer from suboptimum answers derived from underlying
linear estimates by an order of magnitude.
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