Lossless Data Compression Using Adaptive Filters

N. Magotra', W. McCoy', F. Livingston', S. Stearns'

t Dept. of EECE, University of New Mexico, Albuquerque, NM 87131
# Dept. 9311, Sandia National Laboratory, Albuquerque, NM 87185

Ph.:505-277-0808/email:magotra@houdini.eece.unm.edu

Abstract

This paper describes the application of adaptive filters in a two stage lossless data compression algorithm. The term
lossless implies that the original data can be recovered exactly. The first stage of the scheme consists of a lossless adaptive
predictor while the second stage performs arithmetic coding. The unique aspects of this paper are (a) defining the concept of a
reversible filter as opposed to an invertible filter (b) performing lossless data compression using primarily floating-point op-
erations (c) designing lossless adaptive predictors (d) using a modified arithmetic coding algorithm that can readily handle

inputs consisting of more than 14 bits.

1. INTRODUCTION

Lossless data compression has applications in the
area of archiving research data bases, high fidelity audio
compression, medical and radar image data compression
and other areas where fidelity of the signal is critical.
Because there is less data involved with a one-dimensional
signal, the algorithms for waveform data compression can
be much more complex than their two dimensional coun-
terparts. In addition, waveforms such as speech tend to
arise from more complicated models than image data. In
this paper we focus on lossless speech and seismic wave-
form data compression.

The first stage of the lossless data compression al-
gorithm described in this paper is an adaptive predictor.
However, in general, any reversible filter can be used in
this stage. The idea of reversible filtering is very closely
related to predictive coding as it was presented by Atal in
his work at Bell Labs [1]. Predictive coding was devel-
oped for the purpose of bit rate reduction in telephone
calls. It was discovered that by quantizing and transmit-
ting the residue sequence, the bit rate could be substan-
tially reduced while an acceptable level of fidelity could
be maintained at the receiver. More recently, a modified
predictive coder for a digital, lossless system has been
proposed [2], as shown in Figure 1. This paper is a gen-
eralization of the aforementioned technique using adaptive
filtering techniques and floating point arithmetic.

The second stage of the lossless data compression
algorithm consists of an encoding stage. In the present
version we use a modified form of arithmetic coding [3, 4].

We have shown [5] that various predictor structures
can be used in the first stage for lossless data compression
with only a few critical restrictions. The predictor struc-
tures may be linear or nonlinear, fixed or adaptive, and
can be implemented using floating point arithmetic. These
algorithms are incrementally processed as opposed to
block processed.

The discussion in this paper is limited to purely
digital systems. In order to be considered a reversible
filter, a filter must have a reverse which exactly restores

1217

its output to the bit-for-bit exact original input as shown in
Figure 2. The question is not simply one of structure, but
also of implementation. If computers were not limited in
precision, transform operations such as the FFT would be
reversible; causal, invertible filters would be reversible,
but they are not, in general reversible because of finite
precision effects.

2. PREDICTION STAGE

The following discussion describes the lossless pre-
diction stage in detail. Figure 2 shows a block diagram of
a predictor which can be implemented by the following
equation,

e, =x,—H(X,07) ¢))

where x, is the current integer sample value and
H(X..0,) is the predicted value. X is a sequence of
vectors representing the past samples of the signal source
and possibly past values of the error sequence. 8} is the

sequence of weight vectors and e, is the difference be-
tween the current sample value and the predicted value.
The receiver processor recovers the current sample using
the following equation.

X, = e, +H(X;,07) 2

In order to implement Equation (2), the receiver
must have access to e, and must also be able to reconstruct
H(s). e, will be decoded from the transmitted bit stream
at the receiver. The receiver processor will be able to
reconstruct H(e) under two conditions. First, the receiver
processor must have access to X, and 8,. Therefore, a
keyword may need to be transmitted prior to decompres-
sion which contains information such as a signal model, or
the number of transmitted bits per symbol. Second, it
must also be able to generate, bit for bit, the exact same
H(e) as the compression processor. The goal of the first

0-7803-2431-5/95 $4.00 © 1995 |IEEE



stage of the algorithm is to losslessly decorrelate the input
data.

We have shown that, it is possible to use floating
point arithmetic on the past values and still preserve the
data integrity. This makes the implementation of adaptive
techniques such as the normalized least mean squared
(NLMS) algorithm very straightforward. The only restric-
tions being that the prediction filter output is rounded and
the compression and recovery algorithms have to be im-
plemented on the same architecture. The following equa-
tions summarize the NLMS algorithm.

e(n) = u(n)-RbUND[w{, (Muyg(n=1)]

Wag(m) =[wy () wy(n)- - wpg(m)] 3)
uly(n~1)=[u(n—u(n—2)---u(n - M)|
Wy (n+1)=wy(n)+pu(n)e(nyuy (n—-1) @
62,(n) = B&2,(n- 1D+~ Bler1(n-1) 5
u
= 6
wn) o 6)

where wy is the weight vector, uy is the input data vector,
W is a convergence parameter, [ is a smoothing parameter,
and &, is an input power estimate. The algorithm can be
losslessly reversed as follows.

Wy (n+1)=wy (n)+ p(n)e(n)uy (n—1) )]

u(n) = e(n)+R0UND[w{,(n)uM(n-1)] @)
The power estimate is updated according to equation (6).

In searching for a good adaptive algorithm, the pri-
mary goal was fast convergence because it translates into
lower mean squared error and higher compression ratios.
Lattice filters are known for their fast convergence prop-
erties, therefore, they were investigated next. The struc-
ture for a lattice filter is different than an adaptive trans-
versal filter in that the current sample undergoes M addi-
tions where M is the order of the filter as can be seen in
Figure 3. The implementation is a bit more difficult for a
lattice filter. It is necessary for the lattice predictor to
have an a priori algorithm, that is, all coefficient updates
must be a function of only past values of the error. In order
to compress the data the operands must all be of the same
precision as the input data which typically would necessi-
tate a rounding operation prior to each addition. This
produced large numerical errors in practice and it was
necessary to reconfigure the computations as given below.

We found the recursive least squares lattice (RLSL)
adaptive filtering technique to be optimal for this applica-
tion. Recursive least squares algorithms are designed to
lock onto the optimal weight vector at each iteration of the
algorithm and because of this were able to perform better
than the gradient adaptive algorithm.

1218

The algorithm we used is the a priori RLSL as de-
scribed by Haykin [6]. The key equations are summarized
below.

RLSL structures minimize the energy functions
given by Equations (9) and (10) at each time instant, n.

Fa(n)= Y A2 0) ©
i=0

Bu(m= 3 Xy (10)
i=0

Tin(n) and Win(n) are the forward and backward prediction
errors respectively at time n and of order m. The order
update recursions are given by

Am-l (n) = Mm—l(n - l)+

(11
Ym0 =W gy (=111, _1 ()

where An_i(n) 1s a lattice coefficient for stage m—1 which
has not been normalized, ¥m_i(n) is as defined below in
Equation (16), and A is the recursive least squares
“forgetting factor”. The An_i(n) coefficient is the same for
both forward and backward prediction coefficients of the
same order.

Am_] (n)

Trm(m=-3=22= (12a)
r,,_,,,(n)=—AF'"-—1‘((:)) (12b)

I'tm(n) and Tpm(n) are the normalized forward and back-
ward lattice coefficients. The basic equations that actually
implement the lattice structure are given below

13)
(14)

nm(n) = 77”._1 (n)+rf'm(n - I)Wm—l(n - 1)
V) =y, 1(n=D+T ,(n= D1, _1(m)

The following two equations represent updated energy
functions for the forward and backward predictors.

Fpy(n) = Ay _j(n=1)+7 (=12 _1(n) (152)
By _1(n) = AB,,_i(n=1)+¥ p_y(n =Dy _(n) (15b)

Bm—l (n)

¥m(n) is a conversion factor which allows the lattice filter
to quickly adapt to sudden changes in the input data.

To ensure lossless operation of the algorithm, the fi-
nal stage lattice output is computed as a single summation
equation to prevent excessive round off errors. As long as
the same lattice equations are implemented at the time of
uncompressing the data (on a computer of similar architec-
ture as the one used for compression) the scheme is
lossless.

Ym(m) =Y m1(n)— (16)



3. ARITHMETIC CODING

The residue (error) sequence generated by the pre-
diction stage is encoded in the second stage. We use an
arithmetic coding algorithm as described below. Arith-
metic coding is able to incrementally compress data at
near optimal rates and is also able to adapt to changing
statistics [3]. The arithmetic coding algorithm includes
two independent parts, an adaptive probability model, and
an incremental transmission implementation.

The probability model consists of an array of integer
frequency counts which is adapted with the arrival of each
new symbol. The higher the frequency of a particular
symbol, the larger its bin in the probability model. The
total frequency count in the array must not exceed a prede-
termined value in order to prevent overflow. Each fre-
quency count must be at least one.

The basic concept behind arithmetic coding is to
map a sequence of integers from a random source onto a
real number with precision related to the sequence length.
Upon the arrival of each new symbol a new range is com-
puted which is a function of the current range and the
limits of the bin in the probability model associated with
that symbol. Key equations [3] for encoding are given
below.

h(n) = l(n—1)+bin_hi(n)* pcn (17)
I(n) = l(n— 1)+ bin_low(n)* pcn (18)

where h, [ are the high and low of the current range re-
spectively, bin_hi(n), bin_low(n) are the current limits of
the probability model corresponding to the current symbol,
and pcn is a number inversely related to the precision of
the current range limits.

After computing A(z) and I(n) the arithmetic coder
transmits all common leading bits between h(n) and i(n)
and recomputes the range as follows [3].

if (1 2 Half)
Transmit 1
h=(h - Half)*2
l=(l - Half)*2
pen = pen*2
if (h < Half)
Transmit O
h=h*2
I=01*2
pcn = pen*2
In this pseudo-code, Half represents the midpoint of the
range of long integer values on the computer architecture.
Conditions of underflow must be avoided and are ex-
plained in detail in [3].

The coding scheme described above has been shown
to give near optimal compression for white gaussian resi-

due sequences with dynamic ranges less than 14 bits [3].
At ranges larger than 14 bits, overflow can occur, and the
symbol set becomes large and cumbersome. Improve-
ments have been made recently in the arithmetic coding
algorithm which solve this problem [4]. This paper pres-
ents results incorporating these improvements. The re-
sults should give an idea of the kind of compression ratios
to be expected from this algorithm.

Table 1 presents the compression results obtained
by using the RLSL algorithm (20 stages, A = 0.996) and
modified arithmetic code. As seen from the results the
average compression ratio is 2.5. Note that the compres-
sion ratio for each event was obtained by assuming that
the input data were represented in the minimum number
of bits needed to represent the maximum absolute value.

4. RESULTS AND CONCLUSIONS

Adaptive algorithms have been demonstrated in
application to the lossless data compression problem. The
RLSL algorithm has been demonstrated to perform the
best for a seismic data base. At present various other
processing techniques are being investigated for the first
stage and the entire algorithm is undergoing trials using
speech and image (Synthetic Aperture Radar (SAR)) data.
A real time version of the algorithm for seismic event data
compression is currently being implemented using the
Texas Instruments TMS320C3x floating-point digital sig-
nal processing chip.

References

[1] Atal, B.S. and Schroeder, M.R., “Adaptive Predictive
Coding of Speech Signals”, The Bell System Technical
Journal, Oct., 1970, pp. 1973-1986.

[2] Stearns, S. D. , Tan, L., and Magotra, N., “Lossless
Compression of Waveform Data for Efficient Storage and
Transmission”, IEEE Transactions on Geoscience and
Remote Sensing, May 1993.

[3] Witten, Neal, and Cleary, "Arithmetic Coding for Data
Compression”, Communications of the ACM, pp. 520-540,
June 1987.

[4] Stearns, S.D., "Arithmetic Coding in Lossless
Waveform Data Compression”, Submitted for publication,
August 1994,

(51 McCoy, J.W., Design and Analysis of Predictors for
Lossless Data Compression, Ph.D. Dissertation, Dept. of
Computer and Elect. Engr., April 1995.

[6] Haykin, S. Adaptive Filter Theory, Prentice Hall, 2nd
edition, 1991.

1219



ol10.. z z
. Pll::;flsss & Encoder ———»
input ction compressed
output Aﬂy H(X,', 9.—)
Figure 1. Algonthm Block Diagram Filter

i

Figure 2. Block Diagram of a Lossless Predictor

Mo(1) Ni() . N output signal
22 '\Z; Tw(n)
input signal |
-1 -1
Vin) Z E W,(n) Z Z Yu(n)

Figure 3. M-Stage Lattice Predictor

Event ID Final Compression

Ratio

anmbhz89 4.79
anmbhz92 3.19
anmehz92 2.12
anmihz92 1.46
kipehz13 2.60
kipehz20 2.03
rarbhz92 2.42

rarlhz92 1.30

Table 1. RLSL Based Result Summary

1220



