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ABSTRACT

The paper presents an error sensitivity analysis of a
bandwidth expansion technique in spectral analysis
based on a noise—protected version of the Chinese
Remainder Theorem. Necessary and sufficient condi-
tions on remainder percent error and sampling period
/time delay error are derived using various properties
from number theory. The developed design criteria
have special relevance to real—time, wide bandwidth
spectral estimation in the EW passive receiver.

L INTRODUCTION

Real—time frequency estimation over a large
spectral bandwidth is a major design requirement for
the modern EW passive receiver. EW frequency esti-
mators may include the FFT, parametric methods
like the covariance algorithm, or the analog IFM
receiver. In the following discussion, the FFT
receiver is emphasized.

Because of A/D converter sampling frequency
and bit level limitations, a single FFT frequency unit
cannot provide the required bandwidth or two signal
dynamic range. As an alternative approach, a bank
of FFT units can be operated in parallel at different
sub—Nyquist sampling rates. The resulting aliasing
ambiguity can be resolved and the system bandwidth
expanded through a noise—protected version! of the
Chinese Remainder Theorem (CRT).

This paper will discuss the application of the
technique to real—time spectral estimation emphasiz—-
ing error specification, achievable bandwidths, choice
of sampling rates, time delays, and the effects of
errors in the sampling period/time delay. The single
frequency case will be emphasized here although the
multiple frequency case is equivalent provided all the
receiver unit outputs for a given frequency can be
correctly grouped together2,
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II. DISCUSSION OF THE NOISE PROTECTED
CRT

The Chinese Remainder Theorem provides a
closed form solution for the classical simultaneous
congruence problem of number theory3. In equation
form, this problem can be stated as the solution for
the integer, N, given I remainders, ai (i = 1,...,I), and
I relatively prime moduli, Fj,; i.e.,

N = ai(mod [Fy) = a; + K{Fy

N = a3 (mod [F9]) = az + KoF»

: : : (1)

N = ¢; (mod [F§]) = a; + KiF4

N = a (mod [FI]) = 0+ KIFI
I

where 0 { N {II F; and where Kj are unknown

i=1

integers. In engineering terms, the formulation of (1)
describes a general class of aliasing problems. One
well-known example is the range ambiguity problem4
of pulse doppler radar which can be formulated, using
multiple pulse repetition frequencies, as a simul-
taneous congruence problem in the single target case.

Because of the discontinuous nature of the Kj
integers, catastrophic errors may appear in the solu-
tion of (1) when the remainders {ai} are in error. In
reference 1, a remainder error protection level of q
was introduced by defining Fj = (4q+1) pi as the
new moduli with {pi} representing a set of relatively
prime integers and with the expanded unambiguous

bandwidth, Bu, equal to
I
0 Fy
i=1
Bl" = —373 = plpg...FI (2)
(4q+1)
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To illustrate, let us consider the two receiver case
(I=2). To avoid errors 2 min (Fj, Fj) with noise

perturbed remainders, ai, &j, the expressions @i +

KiFj and &j + KjFj must be within 2q where the
remainder perturbation magnitudes are < q and K;,Kj
are the same integers as in the noise free case
(equation 1). The Fj = (4q+1) pi (i = 1,2) condition
ensures that the following equality holds

| (Ki—Ki) Fi — (Kj~K;) Fj|min = 4a+1  (3)

where I—(i, I_(j represent incorrect integers and Kj,

K; < Pj Kj,I_{j < pi. Condition (3) establishes a
sufficient distance so that the following inequality is
true

|a; — 2; + KiFi — KjFj| < 2941 (4)

for only the correct values of Kj, Kj for noise per-
turbations { q. In the hardware implmentation, the
Fy’s refer to the bandwidth (MHz) or sampling rate of
the corresponding FFT receiver and 7i = 1/Fj
represents the sampling period (usec.). The two
receiver case of (3) and (4) can be extended to the
general I receiver case since it can be shown® that (1)
can be solved as a sequence of two receiver solutions.
For general I, it is possible to free the choice of 74
from the value of Fi by setting Fi7i = C where C is
any real number and Fj is now a dimensionless
integer. The Fj7i= C constraint preserves the
number theory based noise protection since it is
equivalent to multiplying both sides of (4) by
(1/7i/Fi) = 1/C which is the new frequency unit.
From the constraint,

FiT{ = FoT2 = F373 =eeo=C (secs) (5)

we can divide (5) by (4g9+1) to get

C
P1T1=PaT2 = P3T§ =" "= g3 (secs). (6)

With a choice of 71, the other time delays, 71, can be
calculated as

T = [p—}] e i=2,3,..1 (7
Pi

which permits the design of implementable Ti's in

either an analog or digital configuration. For Ti’s

related as in (7), the unambiguous bandwidth can

now be written from (2) as

1
Bu=[T—1] P2P3P4 """ P (8)

IOI. ERROR SPECIFICATION

For a given S/N ratio and finite word length,
2b (b bits of quantization), the frequency accuracy,
0f, of an FFT receiver can be stated either as an
absolute frequency error, |Af I, or as a ratio of the
unambiguous bandwidth, 1/73; i.e., (IAf|) T3 For
the absolute error specification, the q (dimensionless)
can be specified as

q > Int {C|Af|} + 1 (9)

with overall bandwidth increasing with increasing I as
in (8) with C = 7iF;. In the real-time EW passive
receiver, however, the outputs of the FFT receivers
are usually represented by word lengths of b bits. As
a result, a more natural error specification, 0, on
output frequency should be written as a ratio or per-
cent error as

6= % ;1= 1.1, (10)

where mj is the number of quantization levels of
error, and bj is the number of bits of quantization.
The corresponding necessary and sufficient condition
for complete noise protection can then be written as

mj q
251 < F;
q 1 1
= < <-— (11
(49+1) pi = (4+1/q) pi ~ 4pi ()
As an illustrative example, consider the case
where Il = 3, mj=my=m3=3,b;=ba=Db3 =6,

and p; = 2, pg = 3, p3 = 5 = p where p is the
largest of the relatively prime integers. In this
example, m/2b = 0.04875 which is less than 1/4pj,
for all i, which then ensures complete noise pro-

tection. Setting m/2P equal to the 1/(4+ 1/q) p of
(11) implies a q of 4 which generates F; = 34, F2 =
51, and F3 = 85. For an implementable 79 of 25 n.s.,
(7) gives values of 71 = 37.5 n.s. and 73 = 15.00 n.s.
with an overall bandwidth from (8) of 400 MHz. A
significant bandwidth expansion has occurred com-
pared to the 1/7; single receiver bandwidths of 26.6
MHz, 40 MHz, and 66 MHz respectively. The further
expansion of bandwidth requires a fourth receiver and

a minimum p of 7 which will result in a violation of
the criterion of (11) provided the mj/2bi is not
reduced below the value of 0.04875. It follows that
simply increasing I in order to increase BP- may not

be successful since an increase in I represents an

increase in p and a corresponding decrease in the
maximum acceptable (mj/2bi).  This interesting
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effect is due to the increase in frequency error or
required q value that is implied by an increasing 1/ TI

(or increasing I) value for the percent error specifi~
cation. The constraints of (9) and (11) have been
completely verified in simulation.

IV. EFFECT OF SAMPLING PERIOD OR TIME
DELAY ERROR

In the following discussion, 7; can refer to
either the sampling period of an FFT receiver unit or
the analog time delay of a conventional IFM receiver.

Let us assume an error of A7{ in the sampling
period or time delay value, 7{. With f equaling a
frequency within BIJ-’ we can write the perturbation in

Fy, from (5) as

-1 [
AF; =A [C—-]z(:'l —A—T—I] (12)
T1 L ,2
1
which results in the following equality,

£ =(a+KFy [%—
=[prRiEram) £

where a, K{ and f, I_{l correspond to unper-
turbed /perturbed values. Transposing and dividing

by C-1/7{, we can write the remainder perturbation
as

(B — @) = (K{F1 — KiFy) — Kq AF. (14)
Assuming that the error perturbation is small, we can
take K{ = I—(l which leads to
A7y
7T

1

Clearly, the perturbation is greatest when K;=
(K)max = P2P3---P; where I is the number of

|ﬂ—a| =K1|AF1|=K1 . (15)

receivers used; lﬂ—almax can then be written, in
terms of overall bandwidth, B, , using (8), as

T}
Ary
T1 |

(16)

Using (11), we can now specify the following
condition for error free operation for I receivers using
the ratio or percent error specification,

|,5—a|ma.x=13u

|ﬂ_a|max q 1 1
— << < 7
Fj Fi ~ (4+1/q) pi ~ 4pi
i=1,..,L 17

In terms of (16), expression (17) can be immediately
rewritten as

B

kAT
Fi|Ti
ATy 1
= ..Pi-1-Pis1-Pi || < 37— 18
PP2-Pi-tPLst-Pi |7 <gpr  (18)

which can be compactly written as

I

I
41 py
i=1
which imposes a fundamental limit on the acceptable
percent error in the time period (time delay) allowed
in the practical implementation. It follows that (19)
and (11) together form necessary and sufficient condi-
tions for error—free performance.

A7y
T3

(19)

To illustrate, a three receiver case was consid-

ered with p; = 2, p2 = 3, p3 = 7, which from (19)
leads to the inequality
1

4p1p2pP3

Aty
Ti

= 0.0060 (20)

which implies that time period/delays must be accur-
ately set to within 0.60% to avoid catastrophic error.
The bound of (20) appears to be a tight one since
simulation results give errorfree results for 0.5%
accuracy and complete failure of the ambiguity algor-
ithm for a 0.75% accuracy level.

V. CONCLUSIONS

An error sensitivity analysis was performed for
a bandwidth expansion technique based on a noise-
protected version of the Chinese Remainder Theorem.
Necessary and sufficient conditions for error—free
performance were derived for maximum absolute and
percentage perturbations in the receiver remainders
and also for permissible percentage error in the
sampling period (digital methods) and analog delay
times (IFM receiver). The design rules apply to a
general number of receivers and also to the multiple
frequency case.?
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