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ABSTRACT

We describe a modified sequential probability ratio test
(SPRT) for the discrimination of ventricular fibrillation
(VF) from ventricular tachycardia (VT) in measured
surface electrocardiograms. The algorithm uses a novel
regularity measure dubbed blanking variability (BV)
applied to threshold crossings from the measured ECG.
Blanking variability corresponds to the normalized rate
of change of cardiac rate as the blanking interval is var-
ied. The algorithm has been trained and tested using
separate subsets drawn from the MIT-BIH malignant
arrhythmia database. BV values are modeled using a
truncated Gaussian distribution, and parameter values
are derived by averaging over the training component
of the database. In testing, the algorithm achieved an
overall classification accuracy of 95%.

1. INTRODUCTION

Ventricular fibrillation (VF) and ventricular tachycar-
dia (VT) are life-threatening cardiac arrhythmias [1, 2].
Reduction of mortality from such cardiac causes de-
pends on rapid detection and accurate classification of
these arrhythmias. Conventional algorithms used in
both surface ECG monitors and in implantable car-
diovertor/defibrillators rely on simple heart rate for
detection—classification. While both VF and VT have
significantly higher rates than normal sinus rhythm,
the rate range of VF overlaps with that of VT [3].
Thakor et al. [4, 5] described a sequential probability ra-
tio test (SPRT) based on the threshold crossing interval
(TCI), which is equivalent to the reciprocal of rate, for
the discrimination of VF and VT. Using the malignant
ventricular arrhythmias of the MIT-BIH database, we
found that the T'CI distributions of VF and VT overlap
significantly (see Figure 1(a)), which leads to a signifi-
cant error rate in the detection algorithm (see Section
3).
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We approach this problem by utilizing a novel fea-
ture dubbed blanking variability (BV) designed to pro-
vide greater separation between the feature distribu-
tions for VF and VT. BV provides a measure of the
variability of heart rate with respect to the so-called
“blanking interval” — the interval over which the heart
is considered refractory. After computing BVs from
sampled ECG data from a wide range of recorded ar-
rhythmias, we construct probability density functions
of BV for VF and VT using a truncated Gaussian model.
Observed BV values are then subjected to an SPRT
that is modified to account for the truncated Gaussian
parameters.

2. DETECTION ALGORITHM

2.1. Rate Computation

In the first stage of the classifier, the instantaneous rate
is derived from the interval between successive depolar-
izations. Threshold crossings are measured by setting
a threshold equal to 20% of the peak amplitude of the
ECG signal for each 1-second segment from the record,
and then computing the locations of successive thresh-
old crossings. To avoid multiple counts for a single de-
polarization, a blanking interval is set. This is a time
interval following each depolarization during which fur-
ther threshold crossings are ignored. This corresponds
physiologically to the period following a depolarization
when the heart is refractory, i.e., when it cannot be
depolarized. Blanking intervals on the order of 50-100
ms are typical in heart rate estimation algorithms.

The product of the threshold crossing analysis is
a series of threshold crossing intervals (TCI),t {T:}M,
(measured in milliseconds). The corresponding heart

1The TCIs discussed here are “instantaneous”, as distinct
from the averaged TCIs employed by Thakor et al. [4, 5]. In their
definition, TCls are averaged over successive 1-second intervals.
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rate, {R;}}M,, can then be found simply from

@1(_),—00 (beats/min),
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2.2. Definition of Blanking Variability

The rate sequence R; obtained from Eq. (1) depends
on the choice of blanking interval. In particular, for
“regular” rhythms, varying the blanking interval over
the range 50-100 ms typically changes the rate only
slightly. By contrast, for “irregular” rhythms, a sim-
ilar variation of blanking interval can produce a very
significant change in the rate. Since VT is known to
be significantly more regular than VF, a measure based
on blanking interval variability has the potential to give
good separation of the two arrhythmias. We propose a
new measure, dubbed blanking variability (BV), which
uses the heart rate sequences obtained with three dif-
ferent blanking intervals, 60 ms, 80 ms, and 100 ms,
respectively, and is defined as

|,u.(6°) _ ’u(so) | ll‘(sﬂ) _ ’u’(loo) |

BV = /J,(BO) + #(100) ’ (2)

where p(8®, 4(®9  and u(1%) represent the mean val-
ues of heart rate obtained using blanking intervals of
60, 80 and 100 ms, respectively. Each rate sequence
is processed in blocks or windows of length 30. First,
we apply an N-point median filter to the raw rate se-
quence. This removes outliers from the raw data which
can significantly improve the quality of the resulting
rate estimates [6]. After median filtering, the BV is
computed from the three 30-sample subsequences by
using Eq. (2). Then, the processing window is shifted
by one sample and the BV is recomputed. After 9 suc-
cessive shifts, we obtain 10 values of BV for a given
ECG segment. i

2.3. Modeling the Probability Density Function
of Blanking Variability

Using the MIT-BIH malignant arrhythmia database,
histograms of the BV values corresponding to VF and
VT have been obtained. Here, we have adopted a trun-
cated Gaussian PDF to model the distributions rather
than the traditional Gaussian PDF. This is appropri-
ate because from the definition of Eq. (2), BV is always
non-negative and thus the probability of BV < 0 is zero.
The truncated Gaussian PDF can be written as

K _(1:—uz2
P(z) = p
@)= Tt

0< < oo, (3)

where i and ¢ paramerize the distribution and K is
the unit area constraint

Q- (4
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where erf(z) represents the error function.

Eq. (3) is convenient for implementation of the SPRT.
However, p and o are distinct from the distribution
mean, pup, and standard deviation, op. The relation
between p and ,u D is expressed by

o = E{X}= / \/27r0'2 Lz';’)_dz
= € 27’ er K
= K[\/._ + = (1+ f(ﬁg))]. (5)
Similarly,

2
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Substituting Eq. (4) into Egs. (5) and (6), respectively,
we have

ﬁ 2

-t
HD = (1+erf(7“r e + 4, (7)
and
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Estimates of up and op can be computed from the
BV samples and we can then obtain estimates of x and
o by jointly using Egs. (7) and (8).2 After finding 41 and
o, we compute the constraint constant K using Eq. (4).
The modeled densities are shown in Figure 1(b). While
there is some overlap between the distributions for VF
and VT, this is much less than in the corresponding
TCI plot of Figure 1(a).

2.4. SPRT Implementation

After obtaining the values of BV, we compute the mean
and standard deviation over the database for VF and
VT, respectively. Values of 4, o and K for VF and VT
are then computed as described above. The calculated
values are given in Table 2. Discrimination of observed
rhythms is performed via the SPRT algorithm [7, 8].

Using a median length N = 9, we seek to discrimi-
nate the hypotheses (see Table 2):

2Here, we solve for 4 and o using geometric approximation.
The solution is identical to the intersection of these two equations
in the p-o plane. Error limits of 0.01% were used for the iteration.
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Figure 1: Approximated probability density functions
for TCI and BV. (a): TCI distributions for VF and VT
groups; (b): BV distributions for VF and VT groups.

Hyp: pyvr =-0.0145, . ovr = 0.2875 (Kvp = 2.0838);
ovr = 0.0311 (Kvr = 1.5437).

Hyr:  upyr =0.0118,

We construct a likelihood ratio test (LRT) A, and select
two thresholds, 77 and T3, as

f(BVi,..., BVi | VF)

ABW..- BV = T — v vy O
and

1-—
T = aﬁ, =1 (Ti>T:>0), (10)

where f is the conditional probability density function
under the hypothesis Hy g or Hyr; o is the probability
of rejecting Hyr when it is true and 3 is the probability
of rejecting Hy r when it is true. Comparing the LRT
A with the two thresholds 7} and T3, if A(BV;) > T}

(or A(BV1) < T3), then the algorithm selects Hy p (or
Hyr) and the test is terminated. If T < A(BW;) < Ty,
then the test is inconclusive. In this case, A(BV;, BV,)
is calculated and compared with T} and T3, and so on
until a decision is reached.

The logarithmic form of Eq. (9) for a test compris-
ing m data segments can be written as

(BYi; BY:,..., BVs | VE),
(B‘/I)B‘/Zs'-wBVk | VT)

In(An) = ln[j‘.c

m

> (BV: - pyr)? -

=1

= m ln(KVFUVT 1
Kyrovre 20% 1

LZ(BV:' - uvr)l. (11)

2
2005 4
t=1

Comparing In(A,) with in(T}) and In(T%), we can for-
mulate the decision rule at the mth stage as follows.
Let

1
g(B‘/laaBVM) = 3 (B‘/i_,u'VT)z_
UVT i=1
—— ) _(BVi—pvr)’,
Ivr =1
and
Kyrovp 1-8
sy =2ml -) + 2 In(—),
! (KVFGVT) ( )
Kyrovp B
= In(—————— [ .
8y =2m n(KVFUVT)+2 n(l—a)
The decision rule is
9(BV4,...,BVy) > 51, => Hyp;
< sg, => Hyr;

Otherwise =>> continue testing.

The test is repeated using each successive BV value,
until a decision is reached.

3. RESULTS AND DISCUSSION

To test the proposed algorithm, we used a set of ECG
data vectors of VF and VT obtained from the malig-
nant arrhythmia subset of the MIT-BIH database. For
convenience, the original data were divided into two
groups corresponding to episodes of VF and VT con-
taining 30 and 70 ECG data segments, respectively.
Each segment comprises a 20-second recording. In or-
der to remove baseline drift and high frequency noise,
a band-pass filter (passband = [2 Hz, 20 Hz]) was ap-
plied.
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tained were not critically dependent on the choices for

Table 1: PDF parameter and SPRT classification re- o and [ implying a degree of robustness in the perfor-

sults for the method of Thakor et al.

mean of TCI (ms)

py F = 210.4695, uy 1 = 280.4446

STD of TCI (ms)

oyvp = 62.1029,0yT = 61.6941

a, B

1.38 x 10~ ~ 1.58 x 10!

specified VF 27/30=90%
specified VT 57/70~81%
total correct 84/100=84%
no decision 0%

Table 2: PDF parameter and SPRT classification re-
sults for the proposed method

N=9
By ") = 02242, 1) = 0.0118

median filter length

mean of BV

WF) Ty _
a5 §Y =0.0311

STD of BV =0.1707,0

(uvFr,ovr,KvF)

= (—0.0145,0.2875, 2.0838)
(uvr,ovr, Kvr)

= (0.0118,0.0311,1.5437)

parameters for VF

parameters for VT

a8 36 x 103 ~45x 103
specified VF 28/3093%

specified VT 67/7096%

total correct 95/100=95%

no decision 0%

The classification results obtained using the algo-
rithm of Thakor et al. [4, 5] are given in Table 1.3 We
see that the detection accuracy for VF is 90%, that
for VT is 81%, giving an overall correct classification
rate of 84%. While reasonably high, these results do
not approach the 100% accuracy achieved by Thakor
et al. with their database. We may speculate that the
MIT-BIH database includes a broader range of ven-
tricular tachycardias, including fast tachycardias with
rates that overlap those of VF. We should also point
out that Thakor’s method employs the “averaged” TCI
as a feature used for classification. We have observed
that for the MIT-BIH database such an averaging pro-
cess reduces the differences between the TCIs obtained
from VF and VT groups, compared to the use of in-
stantaneous TClIs.

For the proposed method, the classification results
are given in Table 2. We observe that the overall clas-
sification accuracy increases to 95%. Obviously, the
results obtained are significantly better than those ob-
tained previously. Finally, we note that the results ob-

3To calculate these TCls, we used l-second averaging as
adopted in the original paper by Thakor et al.

mance of the algorithm.

1184

4. REFERENCES

[1] M. E. Cain, B. D. Lindsay, R. M. Arthur, J.
Markham, and H. D. Ambos, “Noninvasive detec-
tion of patients prone to life-threatening ventric-
ular arrhythmias by frequency analysis of electro-
cardiographic signals,” in Cardiac Electrophysiol-
ogy, from Cell to Beside, pp. 817-831, 1990.

M. E. Cain, H. D. Ambos, J. Markham, B. D.
Lindsay, and R. M. Arthur, “Diagnostic impli-
cations of spectral and temporal analysis of the
entire cardiac cycle in patients with ventricular
tachycardia,” Circulation, vol. 83, no. 5, pp. 1637—
1648, May 1991.

[2]

[3] S. C. Vlay, “Clinical recognition of cardiac ar-
rhythmias,” in Menual of Cardiac Arrhythmias, S.

C. Vlay (Ed), Little, Brown and Company, 1988.

N. V. Thakor, Y.-S. Zhu, and K.-Y. Pan, “Ven-
tricular tachycardia and fibrillation detection by
a sequential hypothesis testing algorithm,” IEEE
Trans. Biomedical Engineering, vol. 37, no. 9, pp.
837-843, 1990.

Y .-S. Zhu, and N. V. Thakor, “Ventricular fibril-
lation detection by sequential hypothesis testing,”
in Proc. IEEE/9th Annu. Conf. Eng. Med. Biol.
Soc., pp. 918-919, 1988.

4]

[5]

Q. Fan and P. M. Clarkson, “A robust adaptive es-
timator of rate for cardiac arrhythmia detection,”
in Proc. IEEE ISCAS, vol. 1, pp. 822-825, 1993.

A. J. Wald, Sequential Analyses, Dove, New York,
1947.

[7]

(8]

K. Fukunaga, Introduction to Statistical Pattern
Recognition, Academic Press, New York, 1990.



