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ABSTRACT

An investigation into the use of Prony modeling for
the identification of late potentials (LPs) from signal-
averaged electrocardiograms (SAECGs) is described. We
develop a noninvasive method, based on the short-time
Prony modeling algorithm, to extract a diagnostic fea-
ture, dubbed the Prony residual marker (PRM), from
the SAECG waveform. The PRM is used as a marker
for the presence of LPs and is thus used to predict the
diagnostic outcome of invasive electrophysiologic study.

1. INTRODUCTION

Electrophysiologic study (EPS) is currently considered
the most reliable indicator of heart attack risk. How-
ever, EPS testing is invasive, expensive, and is lim-
ited to large medical facilities with specialized person-
nel. Therefore, a noninvasive, low-cost diagnostic tool
for identifying patients at risk of sudden cardiac death
would represent a significant benefit. Many clinical re-
ports confirm that the presence of late potentials (LPs)
in normal sinus rhythm correlates strongly with the
occurrence of cardiac arrhythmias such as sustained
monomorphic ventricular tachycardia (SMVT) [1], a
precursor to lethal ventricular fibrillation (VF).

LPs behave like low amplitude, fractionated po-
tentials following, but in some cases appearing close
to, or even overlapping the QRS complex in the ECG
waveform. Haberl et al. [2] performed a short-time
Fourier transform (STFT) analysis of multiple sequen-
tially overlapping segments of QRS/ST waveforms in
order to distinguish the LPs from the original signal
and noise by differences in the frequency characteris-
tics. However, STFT analysis is severely limited in
resolving frequency components in the short data sets
containing LPs. In this paper, we introduce a new ap-
proach, based on short-time Prony modeling, to ob-
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tain high resolution spectra from short SAECG seg-
ments so that we may accurately localize changes in
the frequency and energy content of the signal, within
and following the QRS complex. The proposed anal-
ysis procedure can be described in terms of a pattern
recognition (PR) system. Qur algorithm seeks to detect
LPs, and the task of classification is performed using
the detection results. We predict that SMVT will likely
be inducible for a patient (i.e., EPS=+1) if we can de-
tect LPs from the corresponding SAECGs. Likewise,
we predict that a patient is SMVT not inducible (i.e.,
EPS=-1) if we cannot detect LPs.

2. METHOD

2.1. Rationale

The technique employs a set of signal-averaged X, Y
and Z lead ECG recordings. Our analysis is based
on the assumption that the recorded signal can be de-
scribed by a sum of three components: A component
which can be modeled by a Prony series of order p, a
fractionated component, and a component due to noise.
Here, we assume that the Prony modeled component
corresponds to normal ventricular depolarization, while
the fractionated component, if present, to LPs. Such
an assumption is appropriate since it is based on the
claim that normal tissue response, such as ventricular
depolarization, is predictable and can be predicted us-
ing a linear prediction algorithm. Subtracting the mod-
eled depolarization from the original signal, we obtain
the sum of the fractionated and noise components. Ac-
cording to the above assumption, this fractionated or
residual signal thus corresponds to the unpredictable
portion, which may be attributed to abnormal tissue
response, such as LPs. Since the noise level is signifi-
cantly lower for an SAECG than for a raw ECG [3], the
residual signal can be viewed as primarily fractionated
and therefore as a marker of LPs.
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2.2. Prony Modeling Analysis

Based on the fact that LPs occur in the region near the
end of the QRS complex, a short-time Prony model can
be fit to a series of overlapping windows comprising a
region centered at the point corresponding to the end
of the QRS complex [4, 5]. Denoting the ith segment of
the sampled SAECGs corresponding to leads X, Y and
Z as z;(n),yi(n) and z;(n) respectively, we may write

p
D Axik X% + fxi(n) +exi(n)
k=1

( = 2Zin)+ fxi(n) +exi(n) ),

p
Z AvieAl + fri(n) + eyi(n)

zi(n) =

yi(n) =
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n=1,...,0L, i=1,...,M, (1)

where [fxi(n) fri(n) fzi(n)] and [ex;(n) evi(n) ez:(n)]
represent the associated fractionated and noise compo-
nents, respectively. From Equations (1) we can see that
the three leads are modeled using common poles, Ay,
but different amplitudes, Ax;i, Ayix and Az;. This
is known as the multi-snapshot Prony model [7]. Here,
the common poles can be viewed as the fundamental
modes (or frequencies) of the heart beat segment and
they should be unchanged from lead to lead over the
same time interval. This permits processing of all three
leads coherently and may provide an advantage over
performing the analysis on each lead separately. In our
experiments we have found that a Prony order of p = 5,
a segment length of L = 25, and M = 101 overlapping
windows gives good results. Note that the first 50 seg-
ments all begin at points inside the QRS complex, the
51st segment begins at the end point of the QRS com-
plex, and the remaining 50 segments all begin at points
outside the QRS complex.

To estimate the poles and amplitudes for the ith
segment for each lead, first we compute the linear pre-
diction coefficients (LPCs), {a;x}%_,, corresponding to
the p poles, {Aix}L_,, which are the roots of the alge-
braic equation [6]

l+anz" 4 aipz7 2+ +a;pz P =0. (2)

The coefficients are computed from the forward linear
prediction equations
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Note that if the data vector w; and data matrix
W; contain significant noise, Equation (3) or (4) may
produce inaccurate estimates of a;. Applying a singu-
lar value decomposition (SVD) truncation improves the
estimates of a; by reducing the effect due to the noise
space (8, 9]. Here, An SVD of the matrix [w; W;] is
computed first. After the SVD truncation, a low rank
approximation [W; Wi] is obtained which yields mod-
ified linear prediction equations

N % 1
i

The total least squares (TLS) solution for the LPC vec-

tor a; can be found as [9]

8= ~Wiwy = ~(WIW)"'WHa;,  (9)

where { denotes the pseudoinverse and superscript H
denotes Hermitian transpose. Thus, the p poles can be
computed simply by finding the roots of Equation (2).
Rewriting Equations (1) compactly and assuming the
noise and fractionated components are very small, we
have the approximation

u; = AA;, (10)
where
z:(0) ¥:(0) zi(0)
e | PO w0 a0

2(L—1) yi(L-1) z(L—-1)
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Figure 1: Average percent fit error energy for three
SAECG leads. (a): A negative EPS patient (no LPs
detected) (b): A positive EPS patient (LPs detected)
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Therefore, the amplitudes can be found simply using a
least squares solution as

A; = Aty = (AFA) ARy (14)

2.3. Example

Figure 1 shows the three-lead average percent fit error
energies! for all 101 segments for two typical patients.
Figure 1(a) shows a patient with EPS=-1 (SMVT not
inducible) and Figure 1(b) shows one with EPS=+1
(SMVT inducible), respectively. From Figure 1(a), we
can see that the average percent fit error energies are
less than 5% for all segments, which implies that there
may be no LPs in the fit region. Such a finding is con-
sistent with the corresponding EPS result, and we can
conclude in this case that low fit error does correspond
to SMVT not inducible. As for Figure 1(b), we see
that the average percent fit error energies are signifi-
cantly larger for many of the segments. This suggests
the presence of LPs in the later part of the fit region.

2.4. Pattern Classification

Choosing the mean value of the average percent fit error
energies as a feature, the classification task can then be
performed simply using this single feature y, referred to
as a Prony residual marker (PRM). Choosing a thresh-
old T, we can formulate a decision rule:

Ify > T, => SMVT inducible;
if y < T, => SMVT not inducible.

3. RESULTS

We have tested the short-time Prony modeling algo-
rithm on a database consisting of 41 patients (21 neg-
atives and 20 positives) who underwent EPS in the
electrophysiology laboratory at the Ohio State Univer-
sity Hospital. The results are shown in Table 1. The
overall classification accuracy exceeded 85%. Further,

Table 1: Results of the short-time Prony residual anal-
ysis (optimum threshold for PRM = 1.7%)

Detection (%)

19/21 = 90.5%
16/20 = 80.0%
35/41 = 85.4%

not SMVT induced (EPS = —1)
SMVT induced (EPS = +1)
overall classification accuracy

we compared the performance obtained from our PRM
approach and that obtained by applying the standard
time domain criteria developed by Gomes et al. [10].
We found that the PRM approach has a higher classi-
fication accuracy and more general applicability than
the standard time domain criteria. This is because the

1Here, we define the % fit error energy for the ith segment as

)= ()12
100 x J]L:.("%)‘(_:)xﬁ,!lﬂ_, where [ = z,y, 2.
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time domain criteria cannot be applied to ECGs with
prolonged standard QRS duration (i.e., > 120 ms). Ad-
ditionally, adopting different model orders (p) and seg-
ment lengths (L) produced only small changes from the
results shown in Table 1 and the overall classification
accuracy remained above 80% for all choices of p and
L evaluated.

4. DISCUSSION

From Table 1, we note that there are four false nega-
tive (FN) patients (EPS=+1, negative PRM). We may
speculate that this false detection is possibly a result of
the signal averaging process. Generally we know that
the noise level can be reduced by the square root of the
number of ECGs after signal averaging if the noise is in-
dependently and identically distributed (iid) [3, 5]. How-
ever, signal averaging may also cause reduction of LP
level since LPs are known to behave as low-amplitude
fractionated components, and are not completely con-
stant from cycle to cycle. Thus, the PRM values may
be very small for some positive-EPS cases. In addition,
it is also very difficult to distinguish LPs from noise if
both of them are highly dependent on each other [5]
and this may be associated with a small PRM value.

Overall our results indicate that the PRM can pro-
vide an accurate, noninvasive identification of patients
at risk of arrhythmic events. By facilitating the de-
tection of low amplitude fractionated behavior masked
by systolic depolarization of healthy myocardium, we
are able to predict inducibility of SMVT with higher
classification accuracy and wider applicability than is
possible by standard time domain criteria.

ACKNOWLEDGMENT

The authors would like to thank Dr. S. Nelson and
Dr. B. Jaffe, of the Division of Cardiology at the Ohio
State University, for providing the database and med-
ical interpretation. Also, we thank Prof. L. Potter,
of the Electrical Engineering Department at the Ohio
State University, for many useful discussions concern-
ing this research.

5. REFERENCES

[1] P. Novak, Z. Li, V. Novak, and R. Hatala, “Time-
frequency Mapping of the QRS Complex in Nor-
mal Subjects and in Postmyocardial Infarction Pa-
tients,” Journal of Electrocardiology, vol. 27, no. 1,

pp. 49-60, 1994.

(2] R. Haberl, G. Jilge, R. Pulter, and G. Steinbeck,
“Spectral Mapping of the Electrocardiogram with

[4

[5]

[6]

[7]

(8]

[9]

(10]

1180

Fourier Transform for Identification of Patients
with Sustained Ventricular Tachycardia and Coro-
nary Artery Disease,” FEuropean Heart Journal,
vol. 10, pp. 316-322, 1989.

R. M. Arthur, “Fundamentals of Time and
Frequency-domain Analysis of Signal-averaged
Electrocardiogram,” High Resolution Electrocar-
diography, vol. 2, pp. 13-17, 1991.

S.-W. Chen, B. D. Jaffe, S. D. Nelson, and L. C.
Potter, “Prony Residual as Ventricular Tachycar-
dia Marker,” Circulation, vol. 88, p. I-644, Octo-
ber 1993 (American Heart Association 66th Scien-
tific Sessions).

S.-W. Chen, “Prony Modeling for Signal- Averaged
Electrocardiogram Analysis,” Master Thesis, The
Ohio State University, June, 1993.

F. B. Hildebrand, Introduction to Numerical Anal-
ysis. New York: McGraw-Hill, Inc, 2ed., 1974.

W. M. Steedly, and C. J. Ying, and R. L.
Moses, “Statistical Analysis of True and Extra-
neous Mode Estimates for the TLS-Prony Algo-
rithm,” in IEEE Proceeding ICASSP 93, Min-
neapolis, MN, April, 1993.

S. L. Marple, Jr.,Digital Spectral Analysis with
Applications. Englewood Cliffs, New Jersey:
Prentice-Hall, 1987.

M. A. Rahman, and K.-B. Yu, “Total Least
Squares Approach for Frequency Estimation Using
Linear Prediction,” IEEE Trans. Acoustic, Speech,
and Signal Processing, vol. ASSP-35, no. 10, pp.
1440-1454, October 1987.

J. A. Gomes, S. L. Winters, D. Stewart, S.
Horowitz, M. Milner, and P. Barreca, “A New
Noninvasive Index to Predict Sustained Ventric-
ular Tachycardia and Sudden Death in the First
Year after Myocardial Infarction: Based on Signal-
averaged Electrocardiogram, Radionuclide Ejec-
tion Fraction and Holter Monitoring,” J. Am.
Coll. Cardiology, p. 349, 1987.



