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Abstract

It is always desirable to look for more efficient
algorithms for the realization of the discrete cosine
transform (DCT). In this paper, we generalize a
formulation for converting a length-2" DCT into n
groups of equations, then apply a novel technique for its

implementation. The sizes of the groups are 2™, form =
n-1, ...., 0. While their structures are extremely regular.
The realization can then be converted into the simplest
recursive filter form, which is of particularly simple for
practical implementation.

Introduction

The discrete cosine transform [1] is widely used in
digital signal processing, particularly for digital image
processing. Because of the complicated computational
complexity, many efficient algorithms were proposed to
improve the computing speed and hardware complexity.
These algorithms can broadly be classified into the
following categories: 1) indirect computation through the
discrete Fourier transform or the Walsh-Hadamard
transform [2-3], 2) direct factorization [4-7], and 3)
recursive computation [8-12]. Among them, the ones
using indirect computation method often involve extra
operations. The direct factorization decomposes the DCT
directly, so that the total number of operations can be
reduced. By implementing the recursive structure in an
effective way, a regular and parallel VLSI structure can
possibly be used and the computational complexity is
greatly reduced.

In this paper, we present a formulation for converting a
length-2" DCT into n groups of equations and the sizes of
the groups are 2" 2"2 . 2° respectively.  The
resultant formulation is extremely regular, which is
suitable for the implementation using a recursive filter
structure. Furthermore, the beauty of the formulation is
enhanced by expanding the multiple angle cosine function
into a series of high order cosine functions to effect the
realization of the recursive filter structure.
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Derivation of algorithm
The DCT of a data sequence {xo(i}i=0]L...,N-1}
can be written as

Y(k) = ZXO(I)COS( @i ”)k“) M

i=0

fork=0, 1, ..., N-1, where N = 2", n is an integer and
the index "0" of x gives the stage of data representation
(see below).

For the convenience of realization, let us introduce a
formulation, such that Y(k) is split into n groups, namely
Y(Q2r+1), YQQ2r+1)),------ , Y*'(2r+1) and Y(0)

forr=0, 1,...., 2°° ™D

Let us rewrite Y(k) in the form of Y(2™(2r+1)) and
make some simplifications, for m =0, 1, ..., n-1, where m
is the group number starting from zero

Y(Zm(Zr + 1) Z X, (1) cos((Zx + 1) 2" (2r + 1) ]

N-1
= 3" xgli)cos((2i + 1270, ) @)
i=0
for . = ZrH0m
T 2N

We may rearrange the order of computation of the
lower half of the left hand side, hence,

N

Z xo(l)cos((21 +1)270, )
Y(2m(2r+1) = §

> xo(N - 1-i)cos| (2N - 2i - 126, )

i=0

[ xo(i)cod{ (21 +1)278, ) +

5 xo(N —1-i)cos{ (2N - 2i - 2"6,)
3
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Now let us make use of the property of the factor 2™ in
the formulation that sin(2’“9,t) =0, for t is any multiple

of 22—5 Hence eqn.3 becomes

B xo(i) + xo(N - 1~1i
Y(2"(2r +1) =

)
cos{ (21 +1)2™6
co(2™(2r + 1)) } {(aieve)
@
In order to see further decomposition, let us formulate
eqn4 exactly in the form of eqn.2. Substitute

[%0(i) + xo(N —1-1)] by x(i) into eqn.4, we have

i=0

31
Y(2™(2r +1) = ¥ (x,(0)) cos{ (2 + 1276, ) )
i=0
It is clear that a similar procedure can be used to make

further decomposition of eqn.5. Hence we have
N

Y(2(2r +1)) = Z (xa(i) cos{(2i + 1270, )

1=0
and so on.
In general we have

et Xm(d) - :
Y(2(r+))= Y [x ( N —l—ij cos{(2i +1)2"6,)
2m

i=0 | “m
©)
where x,,,,(i) = x, (i) + xm(-zNT -1- i) @)
Eqn.6 gives a decomposition equation for
Y(2"@r+1), for m = olL.nl and

r=0,1,...,(N2’“"1—1). This means that there are n

groups of equations and each of which gives 2% (™)
results of Y(k)'s. The number of multiplications for each

equation in a group is 2" ™ and only half of the
number of multiplications are required as compared to the
previous group. Let us clarify our ideas with an example.

If N=8, Y(2“‘(2r + 1)) can be expressed as follows,

for m=0,
Y(2r+1) = Z (Xo(l) xo(7- 1)) COS((ZI + I)MJ
i=0
where r=0,1,2,3 3)
for m=1,

Y(22r+1)) = i (%) - x,(3-1)) cos[(Zx +1) 22+ l)n]

i=0

where r=0,1 ©)
for m=2,

Y(4(2r+1) = zoj (x,() - x,1 - 1)) cos((Zi + 1)&%%]

i=0
where r=0 (10)
and Y(0) = x5(0)

Hence 4, 2, 1 and 0 multiplications are required for
expressions in groups with m= 0, 1, 2 and 3 respectively.

Recursive filter form

It is obvious that the arguments of the cosine terms in
eqns.8-10 are with similar kernels, so these regular
structures are possible for VLSI implementation. Our
purpose is to realize the equation in a recursive structure.
The technique for which we suggest here is to convert the
arguments of the cosine terms in eqns.6 into a series of
_2"Qr+hm

N

high order expressions? 1. Let Bmr = , hence

el xm(i)—
Y(2m@r+n)= Y . ( N —l—i) cos((2i +18,,,)
1=0 m om

(11

i
Note that cos((2i + 1)9,,,,,) =Y Ajcos?e,,, where
0

Aj's are some well-defined integers. For the example
N=8 again, the 4x4 matrix A; is defined as:

Agp Ap Ap Ag 10 0 0

A]O Al] sz A13 _ “3 4 0 0

Ay Ay A,y Ayl |5 20 16 0

Ay Ay Agp Ay 7 56 -112 64
(12)
Eqn.11 can then be written as:
2:"1—1 xm(l)—
Y(2r@r+n)= Y N ZA cos?"8,,
i=0 | *m ;;,.“1 ) =0
(13)

#1 00530 = 4 cos® 6 —3cosO
c0s 50 = 16cos> 0 — 20cos® 8 + 5cosO
cos 70 = 64cos’ 6 —112cos’ 0 + 56cos>0 - 7cos 6
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N N 1
qm+l -1 am+l ! xm (l) -
2j+1
N - Ajcos™ O,
=0 i=j | Xm o -1

N__
qm+l

or Y(Zm Q2r+ 1)) = ) ga(Dcos’e,, a4
o

|
where g,(j))= Y. (xm(i)—xm(z—ﬁ——l—i))Aij (15)
i=]

Eqns.14 and 15 are our final equations for the
realization of the DCT. Eqn.14 looks simpler than
eqn.11 because it is now represented by a series of high
order cosine terms. It can be considered as a recursive
formulation which requires simple structure for its
realization, while eqn.15 involves some pre-processing
before feeding data into the recursive formulation.
Surprisingly, no data multiplications might be required
for the realization of eqn.15 for a careful examination of
its structure as shown below.

Realization
1) Data pre-processing

For this part of the realizations, we have to implement
eqn.15. For the simplicity of our discussion, let us use

n=3, hence N=8 for our analysis. In this case, we have to
consider cases with m=0. 1 and 2.

For m=0,
[wmf%mhmﬂ%m—%@huJ
Hxo(2) — Xo(9)]A2; +[x0(3) = Xo(D]A;
forj=0,1,2and 3
For m=1,
g0 = [x(0) = x ®]Ag; +[x: () - x,(D]A;
forj=0, 1 and
x,(0) = X4(0) + X4(7) , x,(1) = Xp(1) + X,(6),
X,(2) = Xo(2) + Xo(5) and x,(3) = x,(3) + X,(4)

go() = [

For m=2,
£2(0) = [x5(0) — X, (D] Ao
for x,(0) = x,(0) + x,(3) and x,(1) = x,(1) + x,(2)

Note also that A, A,,, Ay, A ,,A,; and A, are of

zero values, and Y(0) = x,(0) +x,(I) without further
processing.

Hence this part of the realization involves additions
mainly. It appears that some multiplications of the
factors A; are required.  Interesting enough, the
multiplications of A; as shown below can be converted
into simple adds and shifts which can easily be realized
using hardware techniques or the assembly language of a
CPU. Let us rewrite eqn.12 as

Aw Ay Ay Ag 1 0 0 0
Ay Ay, Ay Anl [22+41 2%+2 20 0
A30 A3l A32 A3 l - 23 26 - 23 24 - 27 26

Hence A;'s involve no real multiplications, however
for long lengths of the DCT, some terms may require
more than one shift/add operations for their
implementation.

i1) Recursive Computation

Eqn.14 can be considered as a recursive filter. Again
let us take N=8 as an example. Hence we have,

for m=0,

3)cos’ O 2
YQr+1)= [[(80( 005" s + &l ))J cos? 8o, + go(O)] cosf

cos? Oy, + go()

forr=0,1,2and3
for m=1,

Y(2(2r +1)) = (g, cos’ 8, +g,(0)) cos®, ,

for=0and 1
for m=2,

Y(2%(2r +1)) = g,(0)cos6,,
for r=0

27 @2r+Dn
where 9m‘r = '——16——'

Hence a total of 21 multiplications are required, which
represents a number larger than those required for
approaches [3-4] which are to optimize the number of
operations. The major advantage of the present
realizations using the recursive filter structure is its
simplicity. The last point can be seen in Fig.1.

It is seen that a single first order recursive filter is
enough for its realization, which represents almost the
simplest possible structure for the realization of the
discrete cosine transform.

There are not many recursive filter algorithms for the
computation of the DCT appeared in the literature.
However, we could still recall the ones that are available
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in the literature for a comparison. Canaris [12] used
Goertzel's [13] algorithm to implement the DCT with a
second order recursive filter structure, but it requires a
large number of multipliers. A second order recursive
filter structure has also been proposed by Chau and Siu
[11], the structure is regular and requires less multipliers
as compared to Canaris' approach. However all these
algorithms involve second order structures, hence extra
buffers and longer computation time are required. In this
paper, we have successfully derived a novel first order
recursive filter structure to compute the DCT, which can
be used to resolve the above problems and obviously gives
a significant improvement over the previous formulations.

Conclusion

This paper gives a formulation 10 convert a length-2"
DCT into n groups of equations, then applies a novel
technique for its efficient realization. The resultant
structure is a first order recursive filter which represents
almost the simplest possible formulation of any DSP
system. Furthermore the filter structure is numerically
stable, since it involves no division at all.
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Figure 1: Block diagram of the recursive filter
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