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ABSTRACT

Orthogonal wavelet packet transforms, presented recently
as powerful tools for nonstationary signal processing, suf-
fered from the lack of efficient and time-domain transpar-
ent algorithms for their implementation. In this paper, we
present an overlapped block lattice structure that allows
fast short-time wavelet packet transform algorithms to be
built in an equivalent manner to other short-time trans-
forms, such as the short-time Fourier transform (STFT)
based on the fast Fourier transform (FFT) algorithms. The
outputs obtained with the overlapped block lattice are equiv-
alent to those achieved by the well known tree-structured
filter bank approach, though the implementation algorithms
are different.

1. INTRODUCTION

The theory of multirate systems and lattice filter banks has
been presented in [1]. This theory is well suited for treating
uniform filter banks and tree-structured wavelet transforms.

The orthogonal wavelet packet transform [2] is a gen-
eralization of the orthogonal wavelet transform [3] that al-
lows nonuniform partitions of the time-frequency plane to
be performed. It is commonly implemented using tree-
structured filter banks, since the cascading of two-band pa-
raunitary filter banks in a tree manner has been shown to be
a sufficient condition to construct orthogonal wavelet packet
transforms .possessing the perfect-reconstruction property
[4]-

Some orthogonal non-overlapped transforms, such as
the Hadamard-Haar transforms and the Fourier transform,
are known to possess equivalent parallel and tree-structured
implementations [5] [6]. In general, the tree to parallel
conversion procedure is simplified in the case of such non-
overlapped orthogonal block transforms, since orthogonal
matrix factorization approaches provide solutions that can
directly be translated into fast transform algorithms. On
the other hand, lapped transforms such as the lapped or-
thogonal transform (LOT), the modulated lapped trans-
form (MLT) and the extended lapped transform (ELT),
possess fast algorithms for uniformm decompositions of the
frequency domain, but without direct translations into bi-
nary tree structures.

The overlapped transform case to be discussed here pos-
sesses a structural solution to this conversion that has been
described in 7).
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Up to now, no parallel algorithms have been proposed
for the implementation of general short-time wavelet packet
transforms with overlapped block orthogonal lattices. This
is the approach presented here.

2. OVERLAPPED ORTHOGONAL
TRANSFORMS

The main idea is first to implement the two-channel filter
bank structure as a matrix product of a delay chain, having
the length L of the prototype lowpass filter H(z), and an
orthogonal overlapped block transform T having no delay
operators. This approach has been described in [7]. The
structure is then extended to any N-band filter bank — N
being a power of 2. At synthesis, the lapped block trans-
form becomes the transpose TT. A criss-cross or butterfly
operation is employed in the algorithms. It is the orthog-
onal operator described in Fig. 1. If we consider the case
N = 8 and L = 4, this procedure produces the analysis

and synthesis algorithms presented in Figs. 2 and 3, respec-

tively. In these figures, 8 = [];_, 1+ 7?)_1/2 is a lattice

normalization factor and the 4; are the lattice parameters.
The overlapped transform is computed in log, N stages.
Such an orthogonal transform performs the time-frequency
decomposition described by the grid in Fig. 4.

It is important to consider the output coefficients at
each stage of the transform which are related to the N-
sample input block being transformed. In Figs. 2 and 3,
these coefficients are highlighted with black dots. When a
transform is calculated on a new input sample block, the co-
efficients that are not marked with dots in the structure can
be shown to be identical to those previously computed for
preceeding input blocks. This means that not all the butter-
fly operations have to be computed when shifting from one
N-point transform block to the next one. A computational

Figure 1: Criss-cross operation: (a) at analysis, (b) at syn-
thesis; 9; is a rotation angle.
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Figure 2: Eight-channel orthogonal transform: analysis sec-
tion.

gain is obtained by pruning the overlapping computations
among the lattice structures applied to consecutive blocks.

The coefficients appearing at the transform output are
in the Hadamard or natural order. The output coefficient
yis(n) corresponds to the band i, in increasing order in
the frequency domain, after transformation of samples 1
to 8. At the intermediate stages, the order of the coeffi-
cients marked with black dots is also related to Hadamard
ordering.

The structures presented do not need to be maximally
subsampled. Any subsampling factor varying from 1 to N,
by powers of 2, can be employed in the case of perfect re-
construction. If the subsampling factor is smaller than N,
the algorithm implements a short-time overlapped orthog-
onal transform. If only the analysis operation is necessary,
the subsampling factor can take any integer value between
1 and N.

The derivation of lattice tree structures that can imple-
ment different filter bank solutions, by varying the orthogo-
nal lattice operators and the delay factors, has been covered
in [7]. A choice of rotations, symmetries and permutations
can be made to fit into the diverse filter types proposed in
the literature, preserving the global structure of the lattice.
This approach can be employed with the parallel structures
described here, so that it retains the flexibility inherent to
the lattices.

The computational complexity C of the overlapped struc-
ture can be shown to be identical to the complexity of tree
structures. We can denote the number of multiplications by
C and additions by C,. After removing all the redundant
operations in Figs. 2 and 3, we have C,, = L/2-N-log, N+N
and Cy = L/2- N -log, N. L is length of the prototype low-
pass filter or twice the number of lattice parameters — 4 in
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Figure 3: Eight-channel orthogonal transform: synthesis
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Figure 4: Eight-channel time-frequency partition and out-
put samples.

our example. N is the number of output channels. The ad-
ditional term N for C,, comes from the normalization factor

B.

3. OVERLAPPED ORTHOGONAL WAVELET
PACKET TRANSFORMS

Up to now we have only presented a transform solution
which allows the calculation of uniform time-frequency de-
compositions. The design of nonuniform partitions of the
time-frequency plane can be easily achieved with the help
of tree-structured filter banks. For this, it is sufficient to
choose a subtree of a uniform N-channel tree structure. The
different coefficients of the transform are then obtained at
the outputs of the subtree at different time intervals. If the
overlapped structure is used, the derivation of nonuniform
time-frequency decompositions is achieved in an analogous
manner. To compute an orthogonal wavelet packet trans-
form it is sufficient to choose a subtransform of a complete
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Figure 5: Four-channel time-frequency partition and output
samples. The downsampling factor is 8.
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Figure 6: Four-channel time-frequency partition and output
samples. The downsampling factor is 4.

N-channel transform. This is equivalent to choosing sub-
trees in complete tree structures.

As a design example, we can consider a four-band or-
thogonal wavelet packet decomposition realizing the time-
frequency partition presented in Fig. 5. The correspond-
ing lattice block algorithm appears in Fig. 7. The sample
block shift or downsampling factor is 8. Here, only the
non-redundant operations have been represented. This al-
gorithm is derived from the eight-channel orthogonal trans-
form of Fig. 2 by extracting a subtransform. However, the
time-spectral coefficients of the wavelet packet decomposi-
tion can be directly obtained from the analysis algorithm
in Fig. 2. The coefficients of any subtransform are always
available at the different stages of its corresponding N-
channel complete transform. The four bands are indexed
from O to 3 and this corresponds to the index i of the out-
put coefficient y:;. The second index j denotes the temporal
location of the segment being analyzed.

As a second example, an illustration of a short-time
decomposition of the input signal is shown by the time-
frequency grid in Fig. 6. The wavelet packet decomposition
is still the same, but the block shift is now 4 samples. The
corresponding lattice block algorithm of this example is rep-
resented in Fig. 8.

4. DESIGN ISSUES

After choosing a structure to perform a wished time-
frequency decomposition, the lattice parameters v; must be
selected to implement filters with well chosen characteris-
tics. In the previous examples, we can choose the parameter
set {70,71} as in Table 1. Such choices of v correspond to
the implementation of the prototype low-pass filters H ()
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Figure 7: Four-channel orthogonal wavelet packet trans-
form with a downsampling factor of 8.

appearing in Table 2, for an orthogonal two-band decompo-
sition. The Remez designed low-pass filter has a transition
bandwidth of 0.2.

As presented in the tables, prototype filters can also be
designed via optimization procedures in order to obtain a
variety of orthogonal prototype filters, with balanced reg-
ularity, frequency selectivity, number of orthogonal opera-
tors, and phase. Such a unified filter design procedure has
been proposed in [8]. It can be employed to compute dif-
ferent types of filters such as Daubechies filters, binomial
filters, MLT filters, ELT filters, those developped for or-
thogonal wavelet transforms, and other paraunitary filter
sets.

The resulting magnitude characteristics of the four-chan-
nel wavelet packet transform, after making the suggested
choices, appear in Fig. 9.

5. CONCLUSIONS

The new structurally efficient approach to wavelet packet
transforms presented in this paper, readily provides a gen-
eral structure for fast orthogonal overlapped block trans-
form algorithms. This new time-domain transparent formu-
lation —overlapped block lattice structure solution— de-
velopped here for time invariant transforms also provides a
simple procedure for designing time-varying wavelet packet

Transform type Yo T

ELT () 12562 0.3494
Daubechies (1I) -1.7321 0.2679
Remez designed (III) | -1.8687 0.4143

Table 1: Lattice parameters.
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Figure 8: Four-channel orthogonal wavelet packet trans-
form with a downsampling factor of 4.

Transf.
type

i 0.5880 + 0.73862" T + 0.2581z 2 — 0.2055z 3

I 0.4830 + 0.83652 % + 0.2241272 — 0.12042 3

1 0.4359 4 0.8146z~' + 0.33742~% — 0.180623

low-pass filter H(z)

Table 2: Prototype low-pass filters.

transforms [9].

The main result of this work is a solution to the open
problem of constructing perfect-reconstruction filter banks
using polyphase block lattice structures as an alternative
to cascaded lattice tree structures. This leads to fast short-
time orthogonal overlapped block transform algorithms, with
multiresolution time-spectral properties. Generalization of
this new time-domain transparent formulation allows for
an uncountable number of short-time wavelet packet trans-
forms to be generated by choosing a type of criss-cross oper-
ator, a lattice block structure, a subsampling factor (lattice
block shift), and the rotation parameters of the lattices.
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Figure 9: Four-channel orthogonal wavelet packet trans-
form magnitude responses. From top to bottom: ELT,
Daubechies and Remez designed.
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