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ABSTRACT

The wavelet transform is applied to integral equations with
Toeplitz kernels. Such integral equations arise in inverse
scattering and linear least-squares estimation. The result
is a system of equations with block-slanted-Toeplitz struc-
ture. In previous approaches, this linear system was spar-
sified by neglecting all entries below some threshold. How-
ever, in inverse scattering, the Toeplitz kernel may not be
a rapidly decreasing function due to reflections from great
depths. In this case, neglecting entries below a threshold
will not work since the system matrix is ill-conditioned. We
use the different approach of exploiting the block-slanted-
Toeplitz structure to obtain fast algorithms similar to the
multichannel Levinson and Schur algorithms. Since it is ex-
act to within the wavelet-basis approximation, this different
approach should prove to be a valuable alternative to the
approximate approach of sparsification in cases when the
latter does not work.

1. INTRODUCTION

The mathematical inverse problem of reconstructing a one-
dimensional continuous layered medium from its impulse
reflection response has many applications in many fields.
These include reflection seismology {1}, acoustic measure-
ment of the shape of the human vocal tract, and the synthe-
sis of nonuniform transmission lines. All of these problems
can be formulated as the nonlinear problem of reconstruct-
ing a spatially-varying reflectivity function r(z) in the two
component wave system (1) (2], from a temporally-varying
impulse reflection response function k(t). Note the problem
is nonlinear due to multiple scattering in the wave system;
these effects are included here, unlike some methods which
ignore multiple scattering (the Born approximation).

We apply the wavelet transform to the Krein integral
equation (4) [3] of inverse scattering. This is also the Wiener-
Hopf integral equation for computing the linear least-squares
estimation filter for a stationary random process, so our re-
sults are directly applicable to that problem.

Previous methods applying wavelet transforms to the
solution of integral equations resulted in linear systems of
equations in which entries below a threshold were neglected
to obtain a sparse system. This works well if the wavelet
representation of the integral equation kernel is rapidly de-
creasing, which generally requires that the kernel itself be a
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rapidly decreasing function such as the covariance of a first-
order Markov random process. However, in inverse scatter-
ing the kernel is the reflection response of the medium to a
probing impulse or impulsive plane wave. Such a kernel is
not a rapidly decreasing function since primary reflections
from great depths will keep the function from dying out.
Hence, sparsification will often not work since the system is
ill-conditioned and neglecting entries will significantly alter
the solution.

We propose to use a fast algorithm to exploit the block-
slanted-Toeplitz structure of the linear system of equations
(9). This algorithm solves the system exactly, without the
approximation inherent in sparsification. It has a form sim-
ilar to the multichannel Levinson and Schur algorithms.
Rather than present the derivation in this limited space,
we show quickly why this is so.

2. REVIEW OF INVERSE SCATTERING AND
THE WAVELET TRANSFORM

2.1. The 1-D Inverse Scattering Problem

Let z be a spatial variable and ¢ be time. Scattering media
are described by the two-component wave system (2]

k2 [d(z,t)] | -2 -r(=) [d(z,t)] 1

o lum)] = =) 2 |lu@n] @
where the reflectivity function r(z) characterizes the scat-
tering medium. If #(z) = 0, then d(z,t) = d(z —t) and
u(z,t) = u(z +1). Thus d(z,t) and u(r,t) can be inter-
preted as Downgoing and Upgoing waves, scattered into
each other at depth z by the reflectivity function r(z).

The scattering medium is assumed to have finite extent
in z; without loss of generality, this extent is scaled to 0 <
z < 1. The boundary conditions are a radiation condition
at z =1 (d(z,t) = d(z —t) and u(z,t) =0 for z > 1) and a
free surface at z = 0 (d(0,t) = u(0,1), excluding sources).
The free surface implies that an upgoing wave at £ = 0 is
simply reflected into a downgoing wave.

This scattering medium is probed with an impulsive
plane wave 8(¢ — 1), which propagates downward into the
medium in increasing depth z as time t increases. The
reflection response k(t) of the medium to this impulse is
measured at z = 0. This amounts to initializing (1) with

u(0,t) = k(t). (2)

The inverse scattering problem is to compute the reflectivity
function r(z) from the impulse reflection response k().

d(0,t) = 6(t) + k(t);
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Several types of inverse problems can be formulated as
the above problem. For example, if the scattering medium
is a continuously-layered acoustic medium with constant
wave speed and varying density p(z), then the problem
of recomstructing p(z) from the reflection response of the
medium to an impulsive plane wave §(t — z) can be formu-

lated as (1) by defining r(z) = {d/dz)log 1/p(z) and

p(z,1)

Vo(z)

where p(z,t) is pressure in the medium and v(z,t) is veloc-
ity of the medium. In other applications p(z) is replaced
with local impedance of a nonuniform transmission line or
cross-sectional area of the human vocal tract.

d(z,t),u(z,t) = + v/ p(z)v(z,1) (3)

2.2. Solution to 1-D Inverse Scattering Problem

The inverse scattering problem can be solved by solving the
Krein integral equation (note the Toeplitz structure in the
kernel k(]z — t])) [3]

k(z—t) = h(z,t)+/ h(z,2)k(|z—t])dz; [t|<=z 0<z<L1

-z
(4)
for h(z,t). r(z) can then be computed from k(z,t) using

r(z) = 2h(z, —z). (5)

We recognize (4) as the Wiener-Hopf integral equation for
computing the linear least-squares filter h(z,t) for estimat-
ing a zero-mean wide-sense stationary random process, with
covariance function k(|z —t|), at time ¢ from noisy observa-
tions, with additive white noise, measured over the interval
—z < t < z. (5) then merely states the well-known result of
linear prediction that the reflectivity function (continuous
reflection coefficient) equals the filter weight at the far end
of the interval of observation.

2.3. Discrete Orthonormal Wavelet Transforms

The discrete orthonormal wavelet transform F{m,n) of a
continuous square-integrable function f(z) is

F(m,n) = /°° f(z)2™?¢(2™z — n)dz (6a)

f@y= Y. Y F(mn)2™?$(2"z—n)  (6b)

M= =00 N=--00

where ¢(z) is the wavelet basis function. ¢(z) is orthogonal
(in the sense of the usual L? inner product) to its scalings
#(2™z) (dilations for m < 0; compressions for m > 0) and
to the translations ¢(2™z — n) of its scalings, and the set
of all scalings and translations {2™/2¢(2™z — n);m,n €
integers} forms a complete orthonormal set.

3. WAVELET REPRESENTATION OF THE
KREIN INTEGRAL EQUATION

3.1. Wavelet Expansions

First, we make a minor change in the Krein integral equa-
tion (4). Define
K'(z) = 2k(2z); h'(z,t) = 2k(z,2t — z); (7a)
t=(z+1)/2 z'=(z+2)/2 (7%)
This merely changes the interval —z < t < z to the interval
0 < t' < z, for the ranges of integration and validity.

Let K'(m3,n3) be the wavelet transform (6a) of k'(x)
and H'(mi,n1, m2,n2) be the double wavelet transform of
h'(z,t) where z maps to (mi1,n1) and ¢t maps to (mz, n2).

Also define the discrete function

oo oo
E(ml,nl,mz,nzymz,na)=/ / 2™ /24(2™1 g — ny)
—o0 v =00

x2™3/2g(2m3y 112)2"""/2<15(2"'3 {(z —y) —na)dzdy
= E(my, mz2,ma,n3, (27" ny — 272 ng)). (8)
E(my, ma2, ma, n3, (27" ny — 27 ™3n3)) has slanted-Toeplitz
structure, defined as being a function not of n; and =n:
separately, but a function of only their weighted difference
2=™ip, — 2™, This is illustrated in the matrix below.

3.2. Linear System of Equations

Inserting wavelet expansions of k¥'(z) and A'(z,t) into the
modified Krein integral equation and applying the wavelet
transform (6a) in z and t yields

K"(m1,ma, (27 ny — 27 ™n;)) = H'(m1,n1, m2, n2)

M
+ Z ZH'(ml,nl,ms,ns)K"(ms,mg,(2_""n3—2'""n2));

m3=0 nj
0<n; <2™ —1; 0<2 ™ <2™ My —1, (9)
where K"(.) is defined from (8) as
K'"(m1,m2,(27 ™ ny — 27" %ny))

M 2Ma_g

= Z Z E(ml,mz,ms,ns,(2_'"‘n1—2_'"’n2))K'(m3,ng),

m3=0 nz=0

(10)
and M is the (arbitrarily large) finest scale used.

The system matrix specified by K”(-) in the system of
equations (9) has block-slanted-Toeplitz structure, in that
in the (m1, m2)"* block the elements (n1,n2) are equal for
constant values of 2" ™'n; — 27 ™3n,, i.e., along diagonals
of slope ~o(m1=m2)  Note that matrix coordinates start at
(0,0) not (1,1). The system matrix has the following struc-
ture (letters denote equal entries, excluding symmetry):

[ % [+ =] [+ * x ] 1
* G * b f * =
[*] [* a] * * b f]
* b = c d e *
* f = d ¢ d e (11)
* * b e d ¢ d
* * f *x e d ¢
L J
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4. FAST ALGORITHM

4.1. Matrix Rearrangements

Examination of the form (11) of the system matrix (10)
in (9) shows that (9) can be rewritten as a set of linear
block-slanted-Toeplitz systems

a [n o] (p ¢ v s] T3 7
[ n ] [ b ¢ [ h 1 j &k T2 y2
0 ¢ b Il m h z3 Y3
P h 1 d ¢ f g Ta| = {9
q it m e d e f zx ys
r Jj A f e d e Zg Ye
3 k 1 g f e d T7 yr

where the system matrix is J+ K", the vector z is a column
of the matrix H'T, and the vector y is a column of the
matrix K. This can then be rewritten as

[a000n0 00 pgqgrs | [z ] K
0a000n 000 pgr 0 *
00a000n 000 pg 0 *
000a00 0 n O0O0O0GQP 0 *
n000b0 c Oh i jk T2 Y2
0n000b 0 cmbhij 0 ] = (12)
00n0cO0bd0!mhbhi z3 |~ | ys
000n0c05b 0 lmhkh 0 *
p000hm !l 0 de fg T4 Ya
gp00ihml edef s Ys
rqp0j3 i hmfede Zs Ye
\ sTqpkj i hg fed]||z7 | ¥

Moreover, these systems of equations with Toeplitz blocks
can be rearranged as block-Toeplitz systems. In this case,
(12) becomes

1
I
1
J
1
J

anp00 qg0or00s 1 Y1
nbh001i10c jOOEk T2 Y2
phdOme Ol fOOg EA Ys
000an p00 ¢qgO0or 0 *
00mnbdb h0OoOO0 :0cy 0 *
giephdOmeoOlf zs | _ | vs (13)
00000 0an p00O0g 0 o=
oclO0O0OmnbhOO T3 Y3
rjfqgiephdOme zg Y6
00000000 O0anp 0 *
000o0c lO00mnbdbh 0 *
| skgrj fqi ephd] |z | | y7 ]

To solve for H'T, the inverse of the block-slanted-Toeplitz
matrix must be computed in terms of the inverse of the
block-Toeplitz matrix in (13) and then applied to the ma-
trix of y vectors (i.e., K"'}). The procedure is as follows.

4.2. Multichannel Levinson Algorithm

First, the inverse of the block-Toeplitz system in (13) is
computed by running the multichannel Levinson algorithm

50 =la rlEnE)

Kl =— Z"'l An—1iRE_(P2_)7,

=0

K:=— (Z"—l An-x,in_i)H (Pay) (14)

i=0
Py=(I-KyK})Pa_y,
P;=(I-KiK.)Pi_..
The algorithm is initialized with Ao, = Boo = I and P{ =
P2 = Ry, where

An(z) = Zn:An,gzi, Ba(2) = XH:B,.,,-Z".

1=0 i=0

This recursively solves in increasing n the system

H H 1
R, RF ... RE 4B, BH, P, 0
Ry Ro ' . _ 0

: . AH BH L0
Rn - Ro 0 P2

where the R, are the blocks in (13).

The Schur algorithm can be run simultaneously with
the Levinson recursions for more efficient computation of
K} and K?. This avoids the summations in (14). The
inverse C~! of the block-Toeplitz matrix is then computed
using the multichannel Gohberg-Semencul formula

¢ =TT (AX)T(AY) - TT (B 2)T(BJ 2)

BYz = [BE, .- BH.0|

I O PR 0 (15)
° .
- T(agy= | Ana
A, AR 1

4.3. Inverses of Submatrices using Outer Products

Second, the inverse B~ of the Toeplitz blocks matrix in
(12) is computed from C~! by noting that the block-Toeplitz
matrix C in (13) can be written as C = Ey --- EyBE; --- E;
where each E; is a self-inverse elementary matrix that per-
forms either a row or a column exchange. Then we have

B'=E ---ExC 'Ex---E. (16)

Third, the inverse of the block-slanted-Toeplitz matrix
D! is computed from the inverse of the Toeplitz blocks
matrix B~'. Note that B can be rearranged into

A=E,;...E\BE,---E; = [ D *]

* *
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where A =E,;--- EyBE; --- E; and thus
A =E;..-E\B'E,---Ej. (m)
Also, A™! can be expressed as
-1 _ | Au | A -
A - [ Az I Az
-1

ant+ (a7, (a7 (a7, a7,

(47 47
(18)

where A, is the nzn upper left submatrix of A and A2z is
an M x M matrix. Thus A]y' can be computed as

ap =[], - L, W WL a9

Repeat this process until A;; = D.
Finally, the solution to the original block-slanted-Toeplitz
system (11) is H'T = D™'K".

1

4.4. Overall Procedure

To reconstruct the wavelet transform R(m,n) of r(z) from
the wavelet transform K(m,n) of k(t):
1. Compute K" (-) from k(t) using (6), (7) and (10);
2. Solve the linear system of equations (11) for H' using
(14)-(18);
3. Compute R(m,n) from H'(-) using
M
R(my,mi)= Y H'(mi,n1,ma,n = 0)27™/2g(0%)
mag=0
(20)
relating the wavelet transforms K (m,n) and R(m, n).
If the Krein integral equation is discretized with A = 2™M,
the resulting system of equations has size 2M. From (11),
the size of the system (9) is (M =largest scale used)

142+4+8+4... +2M=2M"1 (21)

so (9) is only twice as large as the simple discretization.

Direct computation of H'T would require O(2*™) oper-
ations. The above fast algorithm, which uses the fast multi-
channel Levinson algorithm to effectively invert the larger,
rearranged matrix 4 and then uses (19) to compute the in-
verse of a submatrix by computing outer products, requires
O(2*M) operations. Note that the block size is M x M and
M << 2™, so0 the presence of blocks, and particularly the
M x M matrix inversion required in (19), is not significant
computationally.

5. NUMERICAL EXAMPLE

We have successfully used this procedure to solve the Krein
integral equation, and thus the inverse scattering problem.
The reflectivity function r(z) = —1/(z + 2) produces a
free-surface reflection response k(t) = —(1/2)e™" for t > 0,
so that the kernel of the Krein integral equation is §(¢) +
k(|t]) = 6(t) — (1/2)e7"*l. Using M = 4 and a Haar basis
resulted in the h(z,t) shown; the slice r(z) = 2h(z,—z) =
h'(z,0) is also shown, and clearly matches the actual reflec-
tivity. Using a Daubechies basis gave smoother results.
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