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ABSTRACT

This paper is concerned with the development of new
split algorithms for the design of linear least squares predic-
tion filters with linear phase. The proposed fast algorithm,
which fully expresses the inherent symmetry of the prob-
lem, requires lower computational complexity than other
existing ones. Moreover, unlike other existing ones, the
new recurrences involve only the order updates, which lend
themselves to more efficient hardware implementations. For
parallelization consideration, a new split Schur-like algo-
rithm is also proposed to overcome the nonparallelizable
inner product. Some numerical simulation results are pro-
vided to verify the proposed fast algorithms and highlight
possible applications.

1. INTRODUCTION

The design of linear prediction filter (LPF) has been an ac-
tive research area in signal processing {1]. However, in many
practical applications, the direct application of LPF with-
out any constraint will introduce phase distortion which is
an undesirable characteristic, especially in situations where
the timing of the filter response is crucial. In this paper, we
present some efficient algorithms to implement the optimal
linear phase LPF in the least squares sense.

Marple [2] was the first to consider this problem and
develop some efficient algorithms which are imbedded in
the recurrences for the modified covariance (or forward-
backward linear prediction) algorithm considered in [3].
These algorithms were later improved by [4] and 5] via
some matrix inversion lemmas for partitioned matrix which
has some specific structure.

Since linear phase constraint is equivalent to impos-
ing the impulse response of the filter to be symmetric, the
same problem has also been addressed from the aspect of
two-sided linear prediction with symmetric weighting [6,
7], in which the problem was reformulated as a system
of equations with a close-to-block-Toeplitz structure and
then solved by using the multichannel Levinson algorithm
[1]. The applications of these algorithms to high-resolution
spectrum estimation and blind deconvolution of symmetric
noncausal impulse responses were also considered in [6] and
[8], respectively.
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Recently, Delsarte and Genin [9] have noted the inher-
ent symmetry in the traditional fast algorithms for the lin-
ear prediction problems and proposed the three-term “split
algorithm” to reduce the number of multiplications that
would have been required. Motivated from the success of
the split algorithms, in this paper, we develop a “split” ver-
sion of the algorithms considered in {2] by further exploit-
ing the centrosymmetric property of the system matrix as
that of [9]. Since the inherent symmetry is fully expressed,
the proposed fast algorithms require lower computational
complexity than other existing omes. For parallelization
consideration, a corresponding highly parallelizable Schur
algorithm is also addressed.

2. NEW THREE-TERM RECURRENCE FOR
LINEAR PHASE PREDICTION FILTERS

The problem considered is as follows: given a sequence of
data {z(M),z(M +1),...,z(N)}, our objective is to find a
set of linear prediction coefficients c(1),...,¢p(p) so that
the unwindowed summation of the linear prediction errors,

N-—p P 2
Y - Y e@ bat)+am-al @
n=M+p - g=1

is minimized, where we have used the fact that a linear
phase filter has a symmetric impulse response. Using the
orthogonality principle yields the following normal equa-
tion:

0 .
®2p+1T2p41 = [ ap } (2)
0
where
N
Bopri= ) [x2p41 (1) XEp41 (1) + TXzpe1(n)XTp41 (n) ]
n=M42p

with xx(n) = [z(n),...,z(n — k + 1)]7 and J being an
exchange matrix of an appropriate size with one’s along
the diagonal and zeros’ elsewhere, the superscript T de-
notes matrix transposition, L2p41 = [cZJ, l,cZ] with ¢, =
lep(1), ..., c(p)]T, and o} is the corresponding minimum
prediction error.

The development of the proposed fast algorithm relies
on the centrosymmetric and close-to-Toeplitz-plus-Hankel
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structures of the system matrix ®,, which admits the fol-
lowing decompositions:

[ TJ
Q:n s dm dm tm41
Oia = | 2 3::*“]=[qu T am | @)
m Smil tm41  Qm g5

where

@:,,.'.1 = @m+1 - Hm+1 ng:-)-l (4)

with Hm = [Xm(M + m — 1), Jxm(N)]
N-m-=1
Sm+1 = Z Xm41(m +n +1)z(n)
n=M
N—-m-1
+ Y Ixmpr(m+n)z(m+n+1) (6)
n=M

9 = Xy-M-m(N =~ m = 1)XNem1 (N —m — 1)

+ XN Mom(N)XN-M=m(N) = s%s1 )
tmt1 = Xy tem(V)XN-M—m(N = m = 1)
+ XN -M-m(N = m = 1)XN_p=m(N) (8)
’ Nem~1 .
an= Y %n(m+n)z(n)
n=M
N-m-1
+ Z Jxm(m +n)z(m +n+1) (9)
n=M

Note that H,, can be interpreted as the boundary effect
due to the unwindowed assumption of the problem. Here,
we introduce a symmetric auxiliary matrix Un, to account
for this effect. Um is defined as

OmUm = Hum + JHnm (10)

It can be readily verified that Hn, renders the following
decompositions:

hT " h£+1
- m+1 — m+1 — "
0

where

hi = [s(M+k),z(N—k)] and H{ = [xx(M+k), Jxc(N—=1)]

The developed algorithm comprises the following three main
recurrences:

(a) Update the normalized symmetric forward-backward pre-
diction filter gm :

Similar to [2], the algorithm developed is imbedded in
that for the modified covariance problem [3]. However, in
order to yield more efficient recurrences, we consider the
normalized symmetric forward-backward prediction filter
g€m, which is defined as follows:

e ([ ][ 1))

gm+1 =

where am = [am(1),--+,am(m)]7 is the m'* order predic-
tion filter for the modified covariance algorithm [3], i.e. am

minimizes 30 . [(z(n)=3"1, am(k)z(n—k))* +(z(n—
m) =31, am(k)z(n —m+k))?]. It can be shown that g,
obeys the following recurrence:

[ gm+1 0 0
gm+2 = m ] + [ ] - gm Bm41
0 Em+1 0

0
+ [ Un }bm.u (12)
0

where gm41 and bmyyr can be derived by premultiplying
both sides of (12) by @42 and taking the appropriate par-
titions in (3) to yield
Um41 = Tm+1/Tm (13)
bmi1 = (I2 = Bm) "} (Cm+1 — pmi1cm)  (14)
where r
Tm = [qron—21 qm-—2 Jr tm—l]gm (15)
B = H?,:Um, and Cm = H:gm (16)

(b) Update the symmetric auziliary matriz Um:

0
_ U1 0
e[ [ o
+ gmi2dm iy (17)

where Am+1 and dm41 can also be derived by premultiply-
ing both sides of (17) and taking appropriate partitions in
(3) to yield

Amspr = (2 — Bm)_l(Iz — Bm41) (18)
dfii =7 (bl —hE (L — Bmr)
—sF i 1Umir + T Am41} (19)
where
rl =8t Um —hiBm (20)

(c) Update the linear phase prediction filter T'2p41

0 0
Topr1=¢p { [ T2p-1 } — opg2pt1 + { Uzp—1 ] fp} (21)
0 0

where (p, ap, and £, are
f, = (I2 — Bap-1) " €251 (22)
ap = "";1 (€2p—2 + rg‘p—zfp) (23)
Cp = (1 — apt192p41(p + 1) + Uzp-1(p)) ™" (24)
with
€zp = H’zarl’m €2p = qur2p: and op-1 = (pop—2  (25)

Note that while g and Um need to run in every re-
cursion (m = 2p,2p + 1), ['2p41 only runs at alternate time
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steps. Also, since all three quantities are centrosymmet-
ric, i.e. J(-) = (-), only half of the elements need to be
computed.

Compared with other existing fast algorithms, the pro-
posed one possesses some attractive features. First, unlike
other fast algorithms which require both the time and or-
der updates in the recurrences, e.g. [2, 4, 5], the proposed
one only involves the order update. More specifically, let
Gm(2),Um(z), and T2p41(2z) denote the Z-transform for
gm,Um and T2p41, respectively, then we have the block
diagram as shown in Fig. 1 to illustrate the simpler and
more regular update structure for the proposed fast algo-
rithm, thus making the proposed one more suitable for VLSI
hardware implementation.

Second, from the comparison of computational complex-
ity for several existing fast algorithms as shown in Table
1, we can observe that the proposed one requires the least
number of arithmetic operations. These computational sav-
ings can also be verified to be true for more general finite-
impulse response (FIR) filters.

3. NEW SCHUR-LIKE PARALLELIZABLE
THREE-TERM RECURRENCE

The computation of the weighting coefficients in (12), (17),
and (21) involve some inner product operations, which are
undesirable characteristics in a parallel processing environ-
ment. This difficulty can be overcome by introducing the
Schur algorithm. The basic concept of the Schur algorithm
is to replace the variables involving inner products by some
simple recurrences. To accomplish this, we add a new in-
dex n into the variables encountered in the previous section.
More specifically, assume

Hup(n) = [Xm(M +n — 1), Jxm(N + m - n)] (26)
hi(n)=[e(M +n-1) (N -—n+1) (27)

N-1

am(m) = ) xm(K)z(k —n)

N=1 k=M4n

+J D xm(k+m—n)z(k+1) (28)

k=M+n
Bm(n) = Ho(n)Um,cm(n) = HS(n)gm  (29)
rm(n) = qn(n)Um (30)

em(n) = HE(n)Tm and em(n) = q5(n)Unm (31)

If n(or k)=m, these variables will be the same as their cor-
responding counterparts discussed in Section 2. It can be
shown that these new variables render the following recur-
rences:

Bm(n) = Bm..l (n) + Bm_1 (n - 1)
— Bm-2(n=1)Am-1 +Cm(n)dmo;  (32)

cm(n) = cm-i(n)+cmo(n—-1)
=~ €m-2(n — 1)gtm-1 + Bm—2(n — 1)bm-1(33)
Tm = Bm(m—1)+hL_(m—-1cm(m) (34)

where Bm(n) = qf (n)gm and satisfies

Bm(n) = tm-1(n) + Bm-1(n — 1)

= Ym=2(n = D)pim—1 + Wm—2(n — 1)bp_, (33)

with
Mm(n) = Bms1(n) —hp_i(n)cm(m+1) (36)
Wm(n) = rm(n)=hh(n+1)Ba(m+1) (37)
Tm(n) = Am(n) -hn(n+lem(m+1) (38)
Also,

it = Tmia[(BRsi(m + 1) =B (m))(T2 = Bmyi(m + 1))
—Tmp(m+1) + 1 (m) Amy] (39)

rm{n) = Vmoi(n)+rmoi(n-—-1)
= Wmo2(n = 1)Am-1 + Bm(n)dL_; (40)
where vn(n) admits the following recurrence
Vm(n) =rm(n) =B 1(n)Bm(m+1)  (41)

€2p+1(n) and ezp4+1(n) have the following recurrence:

€2p41(n) = (pe1{A2p-1(n — 1) = ap4182p41(n)

+ wap_r(n - 1)fp} (42)
e2p+1(n) = (pr1{ezp—1(n — 1) = aptic2p41(n)

+ Bap-i(n—1)fp} (43)

where Aypi1(n) satisfies

Mp+1(n) = €2p41(n) — g1 (n + 1ezpr1 (20 +2)  (44)

For these new variables, if we substitute n by the same
value as their subscript, we can get their corresponding
counterparts considered in the previous section. Therefore,
we can use the above simple recurrences in lieu of the inner
product operations discussed before to get a highly paral-
lelizable algorithm.

4. SIMULATION RESULTS

In this section, we provide some simulation results, which
not only justify the validity of the proposed algorithm but
they also highlight. some potential applications. In both
examples, the observation data {z(n)} is of the type z(n) =
s(n)+w(n), where {s(n)} is the desired signal and {w(n)}is
tl;e additive zero mean white Gaussian noise with variance
o,

Example 1: Assume s(n) = cos(2x(0.1)n)+cos(2x(0.2)n),
Ng = 45, SNR=20 dB. We can employ the Prony’s method
to estimate the imbedded signal frequencies with the pro-
posed algorithm using p = 2 [1]. 100 Monte Carlo simu-
lations have been carried out via the proposed algorithm.
The estimated frequencies are 0.1063 and 0.1963, respec-
tively, which are very close to the true ones.

Example 2: Suppose s(n) = 1.352s(n — 1) — 1.338s(n —
2) + 0.662s(n — 3) — 0.24s(n — 4), No = 200, 0 = 1. The
average prediction errors from the classical one-sided linear
prediction and the two-sided prediction with the proposed
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algorithm are shown in Fig. 2, in which we can observe that
the two-sided linear prediction method yields lower predic-
tion errors. Indeed, from various simulations performed,
the same fact always remains although we still have not
been able to prove this. This implies that this new schemes
might be an attractive alternative to reducing the predic-
tion errors.

5. CONCLUSION

This paper develops a new fast algorithm for the design of
linear least squares prediction filter with a linear phase char-
acteristic. This new algorithm not only has lower compu-
tational complexity than other existing ones, but it lso pos-
sesses more regular update structures, which make it more
amenable for hardware implementation. For parallelizable
consideration, a corresponding Schur-like algorithm is also
addressed. Some simulations are provided to justify the
validity of these new algorithms.
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