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ABSTRACT

We provide a novel approach to the design of fast algorithms
for matrix multiplication. The operation of matrix multi-
plication is reformulated as a convolution, which is imple-
mented using pseudo-number-theoretic transforms. Writing
the convolution as multiplication of polynomials evaluated
off the unit circle reduces the number of multiplications
without producing any error, since the (integer) elements
of the product matrix are known to be bounded. The new
algorithms are somewhat analogous to the arbitrary preci-
sion approximation (APA) algorithms, but have the follow-
ing advantages: (1) a simple design procedure is specified
for them; (2) they do not suffer from roundoff error; and (3)
reasons for their existence is clear. The new algorithms are
also non-commutative, so that they may be applied recur-
sively to block matrix multiplication. This work establishes
a link between matrix multiplication and fast convolution
algorithms and so opens another line of enquiry for the fast
matrix multiplication problem. Some numerical examples
illustrate the operation of the new proposed algorithms. -

1. INTRODUCTION

1.1. Overview

Ever since Strassen’s [1] observation that the product of
two 2 x 2 matrices may be computed using only seven mul-
tiplications (less than the obvious eight), the problem of de-
termining the minimum number of multiplications needed
to multiply matrices and the design of fast algorithms for
multiplying matrices have both been active research areas.
Most workers have approached the problem using the the-
ory of bilinear and trilinear forms. We do not attempt to
provide a summary of all of the work done on this problem;
the review paper [2] of Pan provides a good introduction.

This paper approaches the problem from a different per-
spective, viz., the theory of fast algorithms for convolutions.
In doing so, we open up another line of enquiry into the
problem of designing algorithms for fast matrix multipli-
cation, and provide different perspectives on the problem.
Linking these two problems allows result from one area to
be applied to problems in the other area.

Our approach is as follows. First, we reformulate matrix
multiplication as a linear convolution, which can be imple-
mented as the multiplication of two polynomials using the
z-transform. Second, we scale the variable z, producing a
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scaled convolution, and make it cyclic. This aliases some
quantities, but they are separated by a power of the scaling
factor. Third, we compute this scaled convolution using
pseudo-number-theoretic transforms. Finally, the various
components of the product matrix are read off of the con-
volution, using the fact that the elements of the product
matrix are bounded. This can be done without error if the
scaling factor is sufficiently large.

1.2. Relevant Previous Work: APA Algorithms

Previous work closest in spirit to ours is the arbitrary pre-
cision approximation (APA) algorithms first proposed by
Bini in [3]. For comparison to our work, we review an APA
algorithm from [3] for multiplying two 2 x 2 matrices A, B
whose (4, j)** elements are a; ; and b; ;, respectively. Define

p1 = (@2, +€a1,2)(ba,1 +€b1,2); p2 = (—a2,1+¢€az,1)(b1,1+€b12);

ps = (622 — €a1,2) (522 + €b22); pa = a2,1(b11 — b21);
ps = (a2 + 02,3)52,1 (1a)
and compute the elements ¢; ; of C = AB by

c1g =(p1+p2+pi)fe—€(a1,1 +a12)b12; €21 = pa4 + ps;

c22=(p1+ps —ps)fe—e€ara(b12 —b22). (1)

If we now let ¢ — 0, the second terms in (1b) become negli-
gible next to the first terms, and so they need not be com-
puted. Hence three of the four elements of C = AB may
be computed using only five multiplications. c¢;2 may be
computed using.a sixth multiplication, so that in fact two
2x 2 matrices may be multiplied to arbitrary accuracy using
only six multiplications. This is even better than the result
of Strassen [1). A Strassen-like algorithm for 3 x 3 matrix
multiplication requires 23 multiplications, while an APA al-
gorithm only requires 21. Greater improvements occur for
larger matrices.
We make the following observations about (1):

1. multiplicands are sums of scaled matrix elements;

2. error can be made arbitrarily small, at the price of
increasing the bit length of the multiplicands;

3. roundoff error makes the computations unstable;

4. (1) and the reason why it exists are not obvious.

A design methodology for fast matrix multiplication al-
gorithms by grouping terms has been proposed in a series of
papers by Pan (see references of [2]). While this has proven
quite fruitful, it has two drawbacks: (1) at some point the
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methodology of grouping terms necessarily becomes some-
what ad hoc, i.e., it requires some user judgment during
the design; and (2) it is not clear from this why these fast
algorithms exist at all.

1.3. Advantages of New Approach

Our approach yields algorithms that require the same num-
ber of multiplications or fewer as APA for 2 x 2 and 3 x 3
matrices. The multiplicands are again sums of scaled ma-
trix elements, as in APA.

- However, our approach has the following advantages:

1. no errors, since the matrix products are bounded;

2. no unstable computations like (1b);

3. the design methodology is quite simple;

4. the reason why the fast algorithm exists is now clear.

Like the Strassen, Pan, and APA algorithms, our algo-
rithm is non-commutative: it does not require that multi-
plication be commutative. This is a very significant fea-
ture, since non-commutative algorithms may be applied to
block matrices. For example, multiplication of two 2" x 2"
matrices has the same form as multiplication of two 2 x 2
matrices, except that elements are now 2"~! x 2"~ blocks.
The Strassen algorithm can be applied directly, even though
matrix multiplication does not commute, since the Strassen
algorithm does not rely on commutativity of multiplica-
tion. Each multiplication in the Strassen algorithm is now
a multiplication of two 2”~! x 2*~! matrices, to which the
Strassen algorithm can again be applied. 2" x 2" ma-
trix multiplication thus requires only 7" multiplications,
and N x N matrix multiplication requires O(N'"*$37) =
O(N?%°T) multiplications.

Use of APA or our algorithms reduces this to O(N'°%2%)
= O(N?*38%), However, since our approach allows relatively
simple design for any size matrix, we can multiply two N x
N matrices, where N = 2°3%5¢. .., by first using the 2 x 2
algorithm a times, then using the 3 x 3 algorithm b times,
and so on. This maximum efficiency is better than the
above bounds.

We assume throughout that all matrix entries have been
scaled to integers. We focus computation counts on multi-
plications, rather than additions, for the following reasons:

1. although recent chips can perform multiplications in
" the same number of clock cycles as additions require,
they require extensive chip area to do so;
2. multiplication is inherently more complex than addi-
tion;

3. in the above nesting multiplications accumulate faster.

2. DERIVATIONS OF ALGORITHMS

2.1. Matrix Multiplication as Convolution

We reformulate the product of two N x N matrices as the
linear convolution of a sequence of length N2 and a sparse
sequence of length N3 — N + 1. This results in a sequence
of length N® 4+ N2 — N, from which elements of the product
matrix may be obtained. For convenience, we write the
linear convolution as the product of two polynomials:

THEOREM. Let A, B, and C = AB all be N x N ma-
trices with elements {ai;}, {bi;}, and {c;;}, respectively.
Define sequences

8i; = aigiN; bij =bno1—itiN; 0L LIS N-1. (2)

The matriz multiplication C = AB is computed by the poly-
N3gNI-N-1

=0
N—-1N-1 N—1 N-1
(Z > aipinz N) (Z 2 ”N-l—i+:‘N¢"(N“"+’”’) ,
=0 ;=0 i=0 j=0
3

where the elements of C are read off of the {ci} computed
in (8) using

nomial multiplication y ciz' =

Cij = ch_N+.'+J'N2; 0 S i,] S N - 1. (4)

PROOF. The coefficient of V" ~N+is+isN? in (9) is the
sum of the products of the coefficients of z*¥11¥ in the first
polynomial and the coefficients of zV(N¥=1—%2+72%) iy e
second polynomial such that 0 < tx, jx S N-1;1<k<3

(1+aN)+N(N=1=iza+52N) = N> = N+is+53N°. (5)
The solution to (5) is readily seen to be

f1=13; Ja=J3; 0<j1i=#H<N-1 (6)

Comparing (2), (4), (6) shows (3) implements C = AB.

The following comments are appropriate here:

1. The degrees of the polynomials multiplied in (3) are
N?~1and N(N?~1), and the degree of the resulting
polynomial is N>+ N? — N —-1;

2. The coefficients of all three polynomials are read off
of the matrices A, B, and C column-by-column. Each
column of B is reversed in order, i.e., read off bottom-
to-top, rather than top-to-bottom. Alternatively, rows
rather than columns may be used, by implementing
CT = BT AT,

3. The multiplication is non-commutative since a func-
tion of the elements of A is multiplied by a function
of the elements of B; there is no mixing. Hence we
can divide-and-conquer as in Section 1.3.

EXAMPLE #1. The 2 X 2 matrix multiplication
[ao,o 00.1} bo,0 50.1] - [co.o Co.xJ

a10 a11] Lhio b1 €16 cg
is implemented by the polynomial multiplication (equiva-
lent to a convolution)
(30,0 + 81,0z + 30,1 2 +a1a z*) (31,0 + bo,0z” + by,1z* + bo,12°)

= :+-z+co,oz’+c;,oz3+tz‘+tz5 +c¢o,2 z°+c;,1 z7+tz’+-zg,
™M

where » denotes an irrelevant quantity.
EXAMPLE #2. The 3 x 3 matrix multiplication
@00 @01 Boz2]| [boo bo1 bo2 €00 €01 Cog2
10 @13 @12 [d10 B K2 | =fc0 cay cap
a20 az3y az22) Lb2o b2,1 b2 c20 €21 €22

(8)
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is implemented by the polynomial multiplication (equiva-
lent to a convolution)

2 3 a s 6
[@o,0 + 81,02 +a202° + 0012 + 8112 + 8212 + @027

+tl1,2!~':7 + 62.233] X [bz,o + bl,ozs + bo,oﬂo'e + 82,1 z° + b1,1 ?

15 18 2 24 ) 7
+bo1z” +b222 +b1227 +bo22°" ] =...c00% +cC102

8 15 16 17 T2 25
+€2,0T ...C01Z  +cC11% +€21Z ...C02Z +cC12Z" ...

2.2. Derivation of Algorithm Analogous to APA

In the sequel we focus on 2 x 2 matrices for clarity; exten-
sions to larger matrices will be clear. In the polynomial
multiplication (7), substitute £ = sz where s is a scaling
factor to be chosen. Render the resulting convolution cyclic
by taking the result mod(z® — 1). The result is

[@0,0 + 81,092 + a0,18% 2% + a1,18°2%][(b1,0 + bo,y 8%) 4+ boos?2?

+b1,18%2%) = (¢ +co15%) + (23 + 11 87)z + (co08° + xs%)2?
+(c1,08° + #87)2% + #2* 4 22°; mod(z® - 1) (10)
where = again denotes an irrelevant quantity.

Now choose the scaling factor s such that |ci ;| < s®
and |+ | < s® for each * in (10). Then the * and ¢;;
may be separated from each other without error, since both
are known to be integers. Indeed, if s is a power of two,
co,1 may be obtained by simply discarding the 6log, s least
significant bits in the binary representation of * + co,15°.

The significance of (10) is that the polynomial mul-
tiplication mod(z® — 1) is equivalent to a 6-point cyclic
convolution, which can be computed using pseudo-number-
theoretic transforms using only six multiplications. Hence
the 2 x 2 matrix multiplication may be implemented using
only six multiplications. Doing the same thing to the poly-
nomial multiplication (9) shows that 3 x 3 matrices may be
multiplied using only 21 multiplications.

This first algorithm is reminiscent of the APA algo-
rithms in the following ways:

1. the number of multiplications is the same as for APA;
2. sums of scaled matrix elements are multiplied in (10);

3. results are sums in which one quantity is neglected or
partitioned from another which is of no interest.

The advantages of the new algorithm are as noted in
Section 1.3. However, this is somewhat unfair to the APA
algorithms—it is clear that this first algorithm is analogous
to the APA algorithms. The main difference is that it uses
integer quantities that may be separated from each other,
rather than floating-point quantities for which one must be
neglected compared to the other. ’

2.3. Algorithms with Fewer Multiplications

Because of this difference, it is clear that a cyclic con-
volution of order less than six may be used. Imposing
mod(z® — 1) on (7) with £ = sz results in

2.2 3.3 8 2.2
[80,0 +a1,08z+a0,18°2° +a1,18° 2" |[b1,0 + bo,18 2+ bo,os” 2

+b1,18° 2] = (x + #3®) + (#8 + co,15%)z + (co,08° + c128)2°
+(e1,08° + #8%)2° + (xs* +48°)2' mod(®-1) (11)

which can be computed using psendo-number-theoretic trans-
forms using only five multiplications. The scaling factor s
must be slightly larger, since now we need |c; ;] < s* and
| # | < s° to ensure separability of ¢i,; and *.

It might seem that cyclic convolutions of even smaller
order might well be used. However, consider the effect of
imposing mod(z* ~ 1) on (7) with z = sz. The constant
term is now (+ + *s* + +s®), which requires many more
bits to store than (* + #s®). Note that this term is not
excessively large in magnitude, as compared to {c1,08° ++s®)
for example, but the storage requirement, in terms of bits
required, is half again as large. While these issues do not
seem to have been addressed previously in the fast matrix
multiplication literature, it is clear that they do become
significant. Similar comments apply to the APA algorithms;
consider bitlengths of the multiplicands in (1) as ¢ — 0.

2.4. Algorithm with One Multiplication

As an extreme case, consider a ome-point (!) cyclic convo-
lution, implemented by imposing mod(z! — 1) on (7) with
z = sz. This amounts to setting z = 1, giving

(ao,o +a1,08 + 60,18 + a1, 33) (bl,o_ +b0,08% +b118* +bo 36)

= stxs+co0s’+1,08° Fast 448" +co 18’ +er1 8T+ +as’.
(12)
Thus a 2 x 2 matrix multiplication can be implemented
using a single multiplication! The only requirement is that
Jcis| < s and |#| < s to ensure separability of everything in
the product. Again, this can be done by simply segmenting
a base-s representation of the result of (12). :
However, the numbers being multiplied here are mas-
sive (note how much bigger s must be). Perhaps (12) is im-
practical, although there are many FFT-based algorithms
for multiplying large numbers and the complexity of mul-
tiplying two n-bit numbers is known to be O(n'**) for an
arbitrarily small §. Parallel and optical processors designed
for multiplying large precision numbers can be applied to
matrix multiplication using (12).

2.5. Implementation Issues

Since the order of the cyclic convolution will almost never
be prime or a power of two, psendo-number-theoretic trans-
forms must be nsed. Tables of factors of 2™ + 1 for various
n, and suggested moduli that are primes or products of
large primes, are available. There is considerable flexibility,
depending on the desired order of the cyclic convolution,
and the hardware for implementing the modulo reductions.
In particular, reduction mod(2™ % 1)/¢, where g is a small
prime, can be implemented by first reducing mod(2™ +1)
(done easily by bit shifting), and only then reducing the
remainder mod(2™ £ 1)/g.

The scale factor s should be chosen to be a power of two,
so that the scalings of the multiplicands can be performed
by bit shifting, and the separation can be performed by
segmenting binary representations of numbers, as discussed
above. H an n-bit cyclic convolution is used, the scaling
factor s may be chosen (crudely) as the smallest power of

two exceeding N maz[a ;, bi ;]*/™ since each c; ; or * is the
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sum of N products in N x N matrix multiplication and s"
is the separation factor (see (10) and (11)).

Note that the result yx of the Eseudo—number-theoretic
transform is not ¢;,; +s™¢; j7, but s cij+8**t"cie jv  mod(p),
for some c;,j and c;r j» or perhaps * (see (10) and (11)). Due
to reduction mod(p), ci ; and cis j» cannot be separated by
binary segmentation. To obtain ¢; ;+s8"cys ;, it is necessary
to solve the equation

(i +8"co ) =y mod(p) —

mod(p), (13)

which fortunately can be done by simple bit-shifting if s is a
power of two. In (13) m is the number such that p|(s™ ~1),
ie., s=2"m™,

In order to minimize the number of multiplications with-
out incurring excessive bitlengths, the order of the cyclic
convolution should be a factor of the length N>+ N? — N of
the linear convolution (consider what happened for N = 2
in going from a 5-point to a 4-point cyclic convolution).
This suggests use of the order n = N? 4+ N — 1, since the
increased bitlength is by the known factor N. Modulus p
must be chosen large enough to represent c; ; + s”c; 1, so
p must be a prime or product of primes where: (1) p > s";
and (2) p|(2™* —1). Note that the multiplicands and prod-
ucts of pseudo-number-theoretic transforms are bounded by
p, so none of these will be very large (unless (12) is used).

n m=k
Cijt+ s cpj=s Yk

3. NUMERICAL EXAMPLES

We present some simple numerical examples, which are de-
signed to be illustrative instead of demonstrating the effec-
tiveness of the new algorithms. Larger values of N lead to
more efficient algorithms. It should be remembered that
these algorithms are non-commutative and can be nested.

3.1. Example #1

We implement the 2 x 2 matrix multiplication
2 4]([9 8 46 40
[3 5] 7 6]— [62 54]' (14)
using six multiplications. We use 64 as a bound for ¢; ; and

*, since this allows the use of s = 2. The prime modulus
p must have the properties: (1) p > 64% = 4096; and (2)

p|2%* — 1 for some k. We choose p = 5419 = gf(}‘%; clearly

2 is a 42™ root of unity mod(p), so 27 = 128 is a 6** root
of unity mod(p).
The polynomial (7) for this problem is

(2 + 3z + 4z° + 52°)(7 + 9z° + 6z* + 8z°)

= 14 + 21z + 4627 + 622> + 48z*
+63z° + 40z° + 5427 + 322° + 402°, (15)

Scaling by s = 2 and taking the result mod(z® — 1) and
mod(5419), the polynomial (10) for this problem is

(2 + 62z + 162% + 402°)(519 + 362> + 962*)

= 2574 + 1535z + 29572% + 47192°

+768z* +20162°; mod(z°® — 1); mod(5419). (16)
The products of the 6-point pseudo-number-theoretic
transforms are:

ok = 0 :[2 + 6 + 16 + 40]{519 + 36 + 96] = 3731.

ok =1:[2 + 6(128) + 16(128)* — 40]x
[519 + 36(128)% — 96(128)] = 4197.
ok =2:[2 +6(128)* ~ 16(128) 4 40]x
[519 — 36(128) + 96(128)%] = 4627.
ok =3 :[2 — 6 + 16 — 40][519 + 36 + 96]] = 3448.
ok =4 :[2 — 6(128) + 16(128) + 40]x
[519 + 36(128)* — 96(128)] = 2683.
ok =5:[2 — 6(128)* — 16(128) — 40]x
(519 — 36(128) + 96(128)°] = 2177.

Here all computations are mod(5419) (recall that multipli-
cations by powers of 128 are just bit shifts). Note that only
half of the NTTs of the elements of B (the second polyno-
mial) need to be computed, since the second polynomial is
a function of z2. Computation of the inverse NTTs of (17)
results in the coefficients of the product polynomial in (16).
Separation of the elements ¢;,; of the product matrix:

14 +2°(40) = 2574;  2*(21) + 27(54) = 1535; mod(5419)

22(46)+2%(32) = 2957;  2°(62)+2°(40) = 4719; mod(5419)
Note that (13) may be used to recover the c;,;, although for

such small values simply adding 5419 a few times to the yx
to create multiples of 2, 4, and 8 is easier.

3.2. Example #2

We implement the 2 x 2 matrix multiplication (14) using
(12). We choose s = 100 to make the operation of (12)
clear, and use commas to identify the ¢; j. The result is

(5040302)(8000600090007) = 4032, 54, 40, 6348, 62, 46, 2114.

Using s = 64 instead of s = 100 would produce a similar re-
sult in binary notation, and would produce a result smaller
than that of (19) by a factor of (100/64)'° = 86.7.
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