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ABSTRACT

The Total Least Squares (TLS) method for solving an
overdetermined system Az = b is a generalization of the
Least Squares (LS) method, and it minimizes ||[E|7]||F
so that (b+7) € Range(A+ E), given A € R™*", with
m > n and b € R™*!. The commonly used TLS al-
gorithm is based on the singular value decomposition
(SVD) of [A]b]. However, in applications where the
matrix A has a special structure, the SVD based meth-
ods may not always be appropriate, since they do not
preserve the structure. Recently, a new formulation,
called Structured Total Least Norm (STLN), and al-
gorithm for computing solutions have been developed.
STLN preserves any affine structure of A or {4 | b],
and can minimize error in the discrete L, norm, where
p = 1,2 or oo. In this paper, we study the STLN
method for problems in which the perturbation matrix
E or [E}r] keeps the Toeplitz structure like the data ma-
trix A or [A|b]. These structures occur in many prob-
lems such as deconvolution, transfer function modeling
and linear prediction problems. In particular, STLN
methods with L, and L; norms are compared with the
LS and TLS methods and shown to improve the accu-
racy of the solutions significantly. When there is an
outlier in the data, the STLN method with L; norm
is shown to produce solutions that are essentially not
affected by the ourlier.

1. FORMULATION OF STRUCTURED
TOTAL LEAST NORM (STLN) PROBLEMS

An important data fitting technique frequently adopted
in signal processing applications for solving an overde-
termined system of linear equations Az = b is the Total
Least Squares (TLS) method {2, 8]. The TLS problem
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can be stated as that of finding E and z, such that
min [(E] ][, ®

where r = b—(A+ E)z, given A € R™*" with m > n,
and b € R™*!, This problem allows the possibility of
error in the elements of a given matrix A, so that the
modified matrix is given by A+ E, where E is an error
matrix to be determined. The generally used computa-
tional method for solving TLS is based on the singular
value decomposition (SVD) of [A]b] [2, 8]. In applica-
tions where the matrix A has a special structure, the
SVD based methods may not always be appropriate,
since they do not preserve the special structure. In fact
the matrix £ obtained from the SVD will typically be
dense, with no structure, even when A is structured.

Recently, a new formulation, called Structured To-
tal Least Norm (STLN), and algorithm for computing
solutions have been developed [7]. STLN preserves any
affine structure of A and can minimize the error in the
discrete L, norm, where p = 1,2 or oo [7]. A theoretical
Jjustification and computational testing of STLN algo-
rithm confirm that it is an efficient method for solving
problems where A or [A | b] has a special structure, or
where errors can occur only in some of the elements of
Aor [A]b].

In this paper, we study the STLN method for prob-
lems in which the perturbation matrix E or [E|r] keeps
the Toeplitz structure like the data matrix A or [A]5].
In many applications in signal processing and system
identification such as deconvolution, transfer function
modeling and linear prediction problems, the matrix A
or {A|b] has Toeplitz or Hankel structure. In particular,
STLN methods with L; and L, norms are compared
with the LS and TLS methods and shown to improve
the accuracy of the solutions significantly. When there
is an outlier in the data, the STLN method with L,
norm is shown to produce solutions that are essentially
not affected by the ourlier. The presented results for
Toeplitz structure also hold for Hankel structure, since
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Hankel matrices simply transform to Toeplitz matrices
by permutations.

In STLN, a vector a € R?*! (¢ < mn) is used to
represent the corresponding elements of the error ma-
trix E € R™%™. If many elements of E must have the
same value, then ¢ is the number of different such ele-
ments. The vector a and the matrix E are equivalent,
in the sense that given E, a is known, and vice versa.
Now, the residual vector r = b—(A+ E)z, is a function
of (a,z). Let D € R?*¢ be a diagonal matrix that ac-
counts for the repetition of elements of « in the matrix
E. Then the STLN problem can be stated as:

min| "D | (2)
o,z
P
where || - || is the vector p-norm, for p = 1,2, or co.

For p = 2, and a suitable choice for D, problem (2) is
equivalent to the TLS problem (1), with the additional
requirement that the structure of A must be preserved
by A+ E.

2. STLN FOR TOEPLITZ MATRICES

The STLN formulation for affine structured problems
and an iterative algorithm have been described and jus-
tified in previous papers [6, 7]. Here, we summarize
how it can be modified to handle Toeplitz structures in
[A]b]. For example, in the LS linear prediction problem
[3], we need to solve

min|| Az — bz 3)

where A € R™*" m > n and either [A | 5] or [b] A]
is Toeplitz . We first show how to modify the STLN
algorithm so that it can treat possible errors in some
or all elements of b in general.

We introduce a vector 3 representing possible errors
in selected elements of b. This is similar to o represent-
ing errors in A. Suppose different errors can occur in I(
< m) elements of b. The error vector 3 € R/’ represents
the error in b. The relation between § and b is given
by a matrix F € R™*!, so that the error in b is the
same as F'3. The (i,j)th element of F' is one if §; is
the error in b;, otherwise, it is zero. Initially, £, o and
3 are all zero, and the new residual # =r = b— Az. In
general, }

7 =#(a,8,7) = b+ FB)— (A+ E)z =r+FB.

In Toeplitz matrices q (< m+n — 1) elements of A are
subject to error.

For the linear prediction problem with [A|b] or [b| A]
Toeplitz and all m + n diagonals are subject to errors,

Algorithm STLN-LPR

Input — A Total Least Norm problem (2), with speci-
fied matrices 4, D, vector b, and tolerance ¢, such that
[A4 ]98] is Toeplita.

Output — Error matrix E, error 1, and vector z, such
that [A + E | b+ ] is Toeplitz.

1. Choose a large number w
E =0, a := 0, fi := 0, compute z from
min||Az — b||,, X from z, 7 := b — Az.

2. repeat

(2)

Ao ~wi(a, b, z)
minimize |[M | AB, | + Da
Aa,Afy,Ax Az ﬂl
where .

w(X -F) -wer w(A+E)
M= D 0 0
0 1 0
(b) z:=z + Az, a := a+ Ae, §:= a, B =
B+ ApBy.

(¢c) Construct E from «, and X from z. 7 :=
(b+8) - (A+E)z.

until (||Az]], [|Aell, |AS] <€)

it is always possible to find a Toeplitz perturbation
[E| FB] such that

b+ FJ € Range(A+ E).

Therefore, we can expect 7 to become zero when the
solution is obtained and since F'3 can play the role of
the residual vector, r =7 — F3 = b—(A+ E)z, we can
formulate the problem as the following weighted least
squares problem

wi(a, B, )
min || Dia Il 4)
*he D,p

where w is a large number [1, 2] and the diagonal ma-
trices D; and D, account for the repetition of the el-
ements of & and B in E and Ff3, respectively. The
minimization required by (4) is done by using a linear
approximation to #(a, 3,z). Let Az and Af represent
a small change in z and J respectively, and AE rep-
resent a small change in the variable elements of E.
Since we can define a matrix X € R™*7 that con-
sists of only 1’s and 0’s and satisfies Xa = Exz [7}, we
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have XAa = (AE)z, where Aa represents the corre-
sponding small changes in the elements of . Then,
neglecting the second order terms in ||Ac|| and [|Az]|,
Fla+ Aa,f+ AB,z+ Ar) =

#a, B,z) — XAa+ FAB - (A+ E)Az.

The linearization of (4) now becomes:

Aa —wr
G Ap + Do
Az Dz,B

minimize
Az, Aa,AP

4

wX —-wF w(A+E)
where G = | D 0 0
0 Dy 0
cuss backward prediction (similar results hold for for-
ward prediction as well) where we need to impose the
Toeplitz structure on [A | b]. Note that the perturba-
tion in b can be represented using the perturbation in
A except for its first component. Specifically, if all the
elements on the different diagonals of [A|b] are different
and subject to error and & = (@1 - Cnym-1)7, E is
Toeplitz with first row = (&, ---a;) and first column
= (an - antm-1)F, F =1, B = (b1 -Bm)T, then

. Now, we dis-

since §; = a;.1, it = 2,---,m, we have

B = pPre1 + Fa (5)
where e; = (1 0 0)T and
F= (I(rgf—);;:(—r:zl) 0(:?(1');1;) . Also, from (5), we

have

XAa-FAB+(A+E)Az = (X—F)Aa+(A+E)Az—ABrer. of A, is (zay ---

Algorithm STLN-LPR summarizes the computations
for solving a Toeplitz structure preserving linear pre-
diction problem where the (m+n—~1)x (m+n —1)
matrix D is

D? = diag(2,3,---,n+1,n+1,---,3,2,1)

provided all m 4+ n — 1 elements of A are different and
subject to error.

3. COMPUTATIONAL RESULTS

The accuracy of Algorithm STLN-LPR is compared
with that of the LS and TLS methods in several Toeplitz
problems using MATLAB [6]. First, we consider a lin-
ear prediction (LPR) problem. We start from m +
n — 1 data samples z; € C arranged in a Toeplitz ma-
trix Ac € C™*" and set up the zero residual set of
equations A.z. = b. by choosing an exact right-hand
side vector b.. Specifically, m = 42, n = 8, 2z =
T8_jelmdt2nV/=In)t 1 < ¢ < 50, the first column

oy LS TLS STLN2
e-10 | 7.12¢e-8 7.12e-8  2.04e-9
e-9 | 6.6le-5 6.6le-5 1.87e-6
e-8 | 7.19e-4 7.19e-4 1.98e-5
e-7T | 7.12e-3 7.12¢-3 1.97e-4
e-6 | 6.95¢-2 6.94e-2 1.91e-3
e-5 8.03e-1 6.53e-1  2.12e-2
e4 | 3.66e+1 8.29e+0 1.86e-1
Table 1: Relative accuracy of the LP solution
oy LS TLS STLN2
e-10 | 1.34e-7  1.34e-7T  4.02e-9
e-9 | 6.6le-5 6.6le-5  1.87e-6
e-8 | 7.19e-4 7.19e-4  1.98e-5
e7 | 7.12e-3 T7.12e-3 1.97e4
e6 | 6.95e-2 6.94e-2 1.91e3
e-b | 8.03e-1  6.53e-1 2.120e-2
e-4 | 3.66e+1 8.29e+0 1.86e-1
Table 2: Relative accuracy of the damping factor
oy LS TLS STLN2
e-10 | 1.98e-8 1.98e-8 6.8e-10
e-9 1.98¢-5 1.98e-5 6.06e-7
" e-8 | 2.05e-4 2.05e-4 6.40e-6
e-7 | 1.99-3 1993 6.87e-5
e-6 2.00e-2  2.0le-2 6.63e-4
e-5 | 2.32e-1  1.95e-1 6.94e-3
e-4 | 6.19e+1 3.06e+1 6.54e-2

Table 3: Relative accuracy of the frequency

2z zl)T and b, = (z50 - - Zg)T, SO
[A¢ | bc) is Toeplitz. The 8 pairs of exact (di, fi) are
{0.1,0.5),(0.2,0.4),(0.3,0.3),(0.35,0.1),(0.4,0.2),
(0.5,0.45), (0.05,0.25), (0.45, 0.05). Random errors, nor-
mally distributed with mean zero and variance 2, are
then added to the data z; and b., generating the per-
turbed set Az = b. The relative errors in the solution
vector x, Jl%ﬁc_ll’ with @ = LS, TLS or STLN2 are
averaged over 100 runs per ¢,. The L2 norm STLN
solution is computed in 10 iterations and the matrix
M always has full column rank.

In addition, we show the relative accuracy of damp-
ing factor and frequency estimates obtained by root-
ing the computed LPR polynomial in each run, as in
Prony’s method. The results are presented in Tables
1-3. Observe that STLN2 improves the accuracy of the
TLS estimates with a factor 30 to 40 for noise standard
deviations up to 10~%, while the differences in accuracy
between TLS and LS remain negligible. For o, = 1074,
the frequency accuracy improves even more than 400
times. Algorithm STLN-LPR can also be used for com-
puting the low rank Hankel norm approximation of any
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LS TLS | STLN2 | STLN1 [ STLNoo Problem LS TLS | STLN1 | STLN2
berr | 8.9e-3 | 5.3e-4 | 4.3e-4 5.5e-4 5.7e-4 1 9.0e-2 | 3.0e-1 | 8.1e-6 | 9.7e-2
Aerr | 1.2e-2 | 1.2e-2 | 5.3e-4 5.4e-4 5.2e-4 2 2.1e-1 | 6.5e-2 | T.5e-6 7.1e-2
Zerr | 1.5e-2 | 1.5e-2 | 7.3e-4 3.5e-4 5.9e-4 3 2.3e-1 | 8.9e-3 | 9.3e-6 2.2e-2

4 2.1e-1 | 1.5e-2 | 1.3e-5 | 4.3e-2
Table 4: Solution Accuracy, A Toeplitz, b unstructured, 5 92.%¢-1 | 3.9¢-2 | 8.1e-6 4.3e-9
m=11,n=6¢=4 6 lde-1| 2.4e-2 | 7.2e-6 | 3.3e-3

m x n Hankel matrix H, which is obtained by solving
Az = b, where A consists of the first n — 1 columns
of H and b is the last column of H. Then the STLN
solution yields the minimum perturbation [E | 8] that
makes [A+ E |b+ (] rank deficient, keeping the Hankel
structure.

In the next problems we tested, the matrix A had
a Toeplitz structure, but b was unstructured. Random
errors were introduced in the elements of A (preserving
the Toeplitz structure) and in the elements of b. The
relative values of these errors are given by the quanti-
ties Aerr and be,.. The values of z were then computed
by LS, TLS, and STLN. The structure of A was pre-
served by STLN, but not by TLS. The relative error
in z is denoted by z.... Approximately 100 different
problems of this type were solved with m > n 4 ¢ and
m < 20. Table 4 shows typical results for problems
with m = 11, n = 6, and q¢ = 4. Results from different
size problems were similar. It is seen in Table 4 that
the STLN algorithm gives an = vector that is between
20 and 43 times more accurate than that computed by
TLS. The accuracy of TLS and LS were very close.

It is known that for some applications, the use of
the L; norm is more robust than the L, norm [4, 5].
In order to explore this with respect to STLN, we car-
ried out a computational test using LS, TLS, and STLN
with p = 1 and 2, on the same problems. We present in
Table 5 some results for [A | b] Toeplitz when there is a
large perturbation (outlier) in one of the diagonals, and
m = 14, n = 4, and ¢ = 17. For each of the six problem
listed, a different single diagonal of [A]&] was perturbed
by 0.5. All other diagonals were randomly perturbed
by 6;, where |§] < 1.0e — 4. The first element of b
was not perturbed (therefore, not corrected). The un-
perturbed matrix A is given by A = Toeplitz(col, row)
where col = (-2, 0, 10, 11, -1, -2, 20, 32, 9,

-5, 38, 84, 50, —1)7, row = (=2, 3, 5, 0), and
by = 0. The exact solution is z = (1,-1,1, —l)T.

The STLN1 result is essentially unaffected by the
outlier. This is in contrast to the LS, TLS and STLN2
results, where the outlier causes z.,» to be several or-
ders of magnitude larger. For two or three diagonals
with large perturbations (0.5), the STLN1 errors were
similar to those in Table 5, while the other errors were
two to three times larger. However, with four or more

Table 5: zrr for [A | b] Toeplitz with an outlier

diagonals perturbed by 0.5, all values of z.,, were large,
including STLN1.
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