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ABSTRACT

We describe a set of programs for circular convolution
and prime length FFTs that are short, possess great struc-
ture, share many computational procedures, and cover a
large variety of lengths. The programs make clear the struc-
ture of the algorithms and clearly enumerate independent
computational branches that can be performed in parallel.
Moreover, each of these independent operations is made up
of a sequence of sub-operations which can be implemented
as vector/parallel operations. This is in contrast with previ-
ously existing programs for prime length FFTs: they consist
of straight line code, no code is shared between them, and
they can not be easily adapted for vector/parallel imple-
mentations. We have also developed a program that auto-
matically generates these programs for prime length FFTs.

1. INTRODUCTION

Because algorithms for prime lengths are building blocks
for composite length FFTs (the maximum length and the
variety of lengths of a PFA or WFTA algorithm depend
upon the availability of prime length modules) prime length
FFTs are a special, important and difficult case.

Fast algorithms designed for specific short prime lengths
have been developed and have been written as straight line
code [4, 5, 14, 16]. These programs rely upon Rader’s ob-
servation [10] that a prime p length DFT can be found by
performing a p — 1 length circular convolution. Since then,
Winograd had designed algorithms for small convolutions
attaining the minimum number of multiplications [16]. Al-
though Winograd’s algorithms are very efficient for small
prime lengths, for longer lengths they require a large num-
ber of additions and the algorithms become very cumber-
some to design. This has prevented the design of useful
prime length FFT programs for lengths greater than 31.
We have previously reported the design of programs for
prime lengths greater than 31 [11] but those programs re-
quired more additions than necessary and were very long.
Like the previously existing ones, they consisted of a long
list of instructions, did not take advantage of the attainable
common computatioral structures and were not amenable
to vector/parallel implementations.

We describe a set of programs for circular convolution
and prime length FFTs that are short, possess great struc-
ture, share many computational procedures, and cover a
large variety of lengths. Because the underlying convolu-
tion is decomposed into a set of disjoint operations they
can be performed in parallel and this parallelism is made
clear in the programs. Moreover, each of these independent
operations is made up of a sequence of sub-operations of
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the form 7 ® A® I where ® denotes the Kronecker product.
These operations can be implemented as vector/parallel op-
erations [3, 15].

We have also developed a program that automatically
generates these programs for circular convolution and prime
length DFTs. This code generating program requires infor-
mation only about a set of modules for computing cyclo-
tomic convolutions. We compute these non-circular convo-
lutions by computing a linear convolution and reducing the
result. Furthermore, because these linear convolution al-
gorithms can be built from smaller ones, the only modules
needed are ones for the linear convolution of prime length
sequences. It turns out that with linear convolution algo-
rithms for only the lengths 2 and 3, we can generate a wide
variety of prime length FFT algorithms.

The programs we describe use Rader’s conversion of a
prime point DFT into a circular convolution, but this con-
volution we compute using the split nesting algorithm [9].
As Stasinski notes [13], this yields algorithms possessing
greater structure, simpler programs and doesn’t generally
require more computation. We wish to note also, that Jones
[6] has advocated the the use of the Agarwal-Cooley algo-
rithm for prime length FFTs.

2. PRELIMINARIES

It is useful to use the matrix formulation of convolution:

n—1
Y(s)= (HOX(Duey = v= (E hkc:[) : ()
k=0
where Chs is the companion matrix of M(s). In the case
of circular convolution, M(3) = 3™ — 1 and C,en_; is the
circular shift matrix denoted by Si.
Similarity transformations can be used to interpret the
action of some convolution algorithms [12]. The Winograd
algorithm can be described by noting the similarity,

Cs,
S n "~ .. = @ C<I> 4 (2)
C‘Pn din
where ®4(s) is the d*® cyclotomic polynomial. In this case,
each block represents a ‘cyclotomic convolution’.
Similarly, the split nesting algorithm [9] combines the

structures of the Winograd and Agarwal-Cooley algorithms
[1], and can be described by noting the similarity,

Sn ~ P ¥(d). (3)
din

Here ¥(d) = ®p|d,pe7> Cas,,(, where Hy(p) is the highest
power of p dividing d, and P is the set of primes.
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Example 1: When n = 45, eq (3) becomes

1

Cs,
545 ~ C'@g C(}
s
Cs, ®Cs,
C{’g ® C<§5

Here, a multidimensional cyclotomic convolution, rep-
resented by ¥(d), replaces each cyclotomic convolution in
Winograd’s algorithm (represented by Cs, in (2)).

2.1. Prime Factor Permutations

When n = ny---ng and ny,...,ns are pairwise relatively
prime, one can convert a one dimensional n point circular
convolution to a k dimensional one: Sp = P (Sn, ® --- ®
Sn, )P where P = Py, . n, is the prime factor permutation.

2.2. Reduction Operations

To obtain the block diagonal form of eq (3), let 1, be a
column vector of p 1’s and Gy be the (p — 1) x p matrix:

1 -1
1 -1
GP = .. : (4)
1 -1
Then
R (Sptl -9 sp:k) B =P ¥(d) (5)
din
where R = Rpix _____ pox is given by
Rpil’ ’Pkk = H Q(mh P. ’ nl) (6)

i=k
v x .
with m; = HJ - pJ , = Hj=‘+1 p;J and

L®L QL
Qa,p%,c) = H Ia®@° ®ICPJ

| o
j=0 Iac(?‘-?“")

The number of additions incurred by R is given by 2nk —
2 k 1 — pntl i
nziﬂ?—;wheren—pl Y

Example 2: RP (S.s) P*R™! equals the block diagonal
matrix in example 1 where P = Py s and R = Ry 5.

These are some of the computational procedures com-
mon among the prime length FFTs programs.

3. BILINEAR FORMS FOR CONVOLUTION

Many convolution algorithms can be written as y = F{Eh=*
D:t} where * denotes point-wise multiplication [2]. For con-
venience, if y = F{Ek * Dz} computes the n point linear
convolution of h and z then we say “(D, E, F') describes a

bilinear form for n point linear convolution.” For example,
(D, D, F) describes a 2 point linear convolution where

1 0 1 o 0
D=1j0 1 and F=]-1 -1 1].
11 0 1 0

Similarly, we can write a bilinear form for cyclotomic
convolution. Let X(s) and H(s) be polynomials of degree
¢(d) — 1 where ¢(-) is the Euler totient function. Let ej
be the k' standard basis vector. If A, B and C satisfy
(Cs,)F = Cdiag(Bex)A for 0 < k < ¢(d) — 1, then the
coefficients of Y{s) = (X(s)H(s))4>d(,) are given by y =
C{Bh x Az}. As above, if y = C{Bh * Az} computes the
d-cyclotomic convolution, then we say “(A, B,C) describes
a bilinear form for ®4(s) convolution.”

But since (X (s)H(3))s,.s) can be found by reducing
X(s)H(s), a cyclotomic convolution algorithm can be de-
rived by following a linear convolution algorithm by a re-
duction: If G is the appropriate reduction matrix and if
(A, B, F) describes a bilinear form for a ¢(d) point linear
convolution, then (A, B, GF) describes a bilinear form for
®4(s) convolution. That is, y = GF{Bh * Az} computes
the coefficients of {X(s)H(8))e,(s)-

3.1. Circular Convolution

Consider p® point circular convolution. Since
Spe = R;g} (@;?:00@ ') Rpe’

the circular convolution is decomposed into disjoint ®,:(s)

convolutlons H (A, By, Cpi ) describes a bilinear form for

®,:(s) convolution and if
A=10A,®---BApe B=19B,D---® Bpe (8)
C=10Cr - Che (9)

then (ARpe, BRye, R, C) describes a bilinear form for p°

point crcular convolut.lon In particular, if (Dga, Ea, Fa)
describes a bilinear form for d point linear convolution, then
Aps, B, and Cpi can be taken to be D¢(p i) E¢(p') and

Goi Fypsy where Gp, represents the appropriate reduction.
Specifically, G, has the following form

-1
e ,=|r - (p=3)p*=" ~1
Pt [ (p=-1)pi—1 1,19 IP‘—I [OP‘_1+1,(P—3)Pi-1 -1

if p > 3, while Gy = []2,._1 {;sz—:q] } )
1,28 =11

3.2. The Split Nesting Algorithm

Let n = p;* -+ - pi*. To obtain a bilinear form for n point cir-

cular convolution, we can combine bilinear forms for smaller

convolutions [9]. If (A, By, Cpi) describes a bilinear form
J k) k)

for @p; (8) convolution and if

A= $d|n Ad
with

B=®4nBs C=04nCq (10)

Ad = Qplaper AHyp) B =O®paperBryp  (11)

Ca = ®pld,peP CHd(P) (12)

then (ARP, BRP, P*R™1C) describes a bilinear form for n
point circular convolution. That is,

y=P'R"'C{BRPh+ ARPz}. (13)
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Example 3: A 45 point circular convolution algorithm:
y= P'R™'C{BRPh x ARPz} (14)

where P = Pys, R= Ry s,

A = 10A4:0A: B A: B (A3 ® As) D (As ® As)
B = 16B;®B;s®Bs ®(Ba®Bs)®(By @ Bs)
C = 19C:0CaC:sE(Cs®Cs) D (CoCs)

and where (A, B,:, C,: ) describes a bilinear form for @, (s)
I 3 3 >3
convolution.
Note that RP block diagonalizes S, and each diago-

nal block represents a multidimensional cyclotomic convo-
lution. Correspondingly, A, B and C are block diagonals.

3.3. The Matrix Exchange Property

When k is known and fixed, BRPh can be pre-computed
and stored. But P*R~'C is more complicated than BRP so
it is advantageous to absorb the work of P*R™!C instead
of BRP into the multiplicative constants. Let J be the
reversal matrix. Applying the matrix exchange property
[4] to eq (13) one gets

y=JP'R'B*{C'R™*PJh+ ARPz}.  (15)

3.4. Implementing Kronecker Products

In the algorithm above we encountered expressions of the
form A1®A2®- - -@ An. To calculate the product (®: A;) z it
is computationally advantageous to factor ®;A: into terms
of the form I® A;®I [1]. For the Kronecker product ®7_; A;
there are n! possible different ways in which to order the
operations A;. To find the best factorization of ®;A; it is
necessary only to compute the ratios (rows; — cols;)/adds;
and to order them in an non-decreasing order [1].

3.5. Vector/Parallel Interpretation

The command ] ® A @ I where @ is the Kronecker (or Ten-
sor) product can be interpreted as a vector/parallel com-
mand [3, 15]. In these references, the implementation of
these commands is discussed in detail and it was found
that the Tensor product is “an extremely useful tool for
matching algorithms to computer architectures [3].”

The expression I @ A can easily be seen to represent
a parallel command. Since each diagonal block represents
exactly the same operation, this form is amenable to im-
plementation on a computer with a parallel architectural
configuration. The expression A ® I can be similarly seen
to represent a vector command, see [3].

In [3] it is suggested that it might be practical to develop
tensor product compilers. The FFT programs described
here will be well suited for such compilers.

4. PROGRAMS FOR CIRCULAR
CONVOLUTION

In writing a program that computes the circular convolution
of b and z using the bilinear form (15) we have written
subprograms that carry out the action of P, P, R, R,

A and B'. We are assuming, as is usually done, that &
is fixed and known so that « = C*R™*PJhk can be pre-
computed and stored. To compute these constants » we
need additional subprograms to carry out C* and R~ but
the efficiency with which we compute » is unimportant since
this is done beforehand and u is stored.

We noted above that bilinear forms for linear convo-
lution, {Dg, Ea, Fa), can be used to construct forms for
cyclotomic convolutions. Specifically, to obtain a bilin-
ear form (Ap:, B, Cpi) for @,:(s) convolution we can take
Age = Dypoyy By = Eyipey and Cpe = G Fype). When
we use bilinear torms for linear convolution obtained by
nesting [2] one can take, for example, Dy = D; @ D2 and
Dg = D> @ D3. Tt should also be noted that in many con-
volution algorithms Dgq = Eg, so that only Dy and D} are
needed.

It is possible to make further improvements to the op-
eration counts. Specifically, algorithms for prime power cy-
clotomic convolution based on the polynomial transform,
although more complicated, will give improvements for the
longer lengths [8, 9]. These improvements can be included
in the code generating program we have developed.

5. PROGRAMS FOR PRIME LENGTH FFTS

Using the circular convolution algorithms described above,
we can easily design algorithms for prime length FFTs. The
only modifications involve the Rader’s permutation [10] and
the calculation of the DC term.

The multiplicative constants, the input and output per-
mutation are each stored as vectors. These vectors are then
passed to the prime length FFT program, which consists of
the appropriate function calls, see the example program be-
low, included for exposition. In previous prime length FFT
modules, the input and output permutations can be com-
pletely absorbed in to the computational instructions. This
is possible because they are written as straight line code.
If desired, the code generating program described here can
be modified so that it also produces straight line code.

Table 1 lists the arithmetic operations incurred by the
FFT programs we have generated. The number of additions
and multiplications are the same as previously existing pro-
grams for prime lengths up to and including 13. For p = 17
a program with 70 multiplications and 314 additions has
been written, and for p = 19 a program with 76 multipli-
cations and 372 additions has been written [5]. Thus for
the length p = 17, the program we have generated requires
fewer total arithmetic operations, while for p = 19, the
new program uses more. There are several table of opera-
tion counts in [7]. For each, the algorithms described here
use fewer additions and fewer multiplications. The focus of
[7], however, is the implementation on various architectures
and the advantage that can be gained from matching algo-
rithms with architectures. Although we have not executed
the programs described in this paper on these computers,
they are, as mentioned above, written to be easily adapted
to parallel/vector computers.

Some algorithms for prime length FFTs in {7, 13] for
which operation counts are giver assume that a row-column
method can be used for convolution. Unfortunately, how-
ever, the convolution of two sequences can not be found in
general by forming two arrays, by convolving their rows,
and by then convolving their columns.
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Table 1: Operation counts for prime length FFTs

P M A P M A P M A
3 4 12| 41 280 1140 | 241 3280 13020
5 10 34| 43 256 1440 | 271 3760 18152
7 16 72| 61 400 1908 | 281 4480 19036
11 40 168 71 640 3112 | 337 5248 22268
13 40 188 73 532 2504 | 379 6016 32880
17 82 274|109 940 5096 | 421 6400 29412
19 76 404 | 113 1312 5516 | 433 7708 32864
29 160 836 | 127 1216 6760 | 541 9400 43020
31 160 776 [ 181 1900 8936 | 631 12160 56056
37 190 990 | 211 2560 12368 | 757 15040 76292

x 10 Operation Counts for Prime Length FFTs

50 100 150 200 250 300 350 400 450
]

Figure 1: Plot of additions and multiplications incurred by
prime length FFTs.

6. CONCLUSION

We have found that by exploiting the structure of the split
nesting algorithm we have been able to write a program that
automatically generates compact readable code for convo-
lution and prime length FFT programs. By recognizing,
also, that the algorithms for different lengths share many
of the same computational structures, the code we generate
is made up of calls to a relatively small set of functions.
Accordingly, the subroutines can be designed to specifically
suit a given architecture.

A full length version of this paper is available on the
World Wide Web at http://jazz.rice.edu and from SPIB at
http://bellona.cs.rice.edu/spib.html.
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A. A 31 POINT FFT PROGRAM

function y = fft31(x,u,ip,op)

% y : the 31 point DFT of x

% u : a vector of precomputed constants

% ip,op : input, ouput permutation

x = x(ip); % input permutation
x(2:31) = ERED([2,3,5],[1,1,1],x(2:31)); % reduction
¥ = x(1)+x(2); % DC term calculation

h - "block : 1

y(2) = x(2)*u(1)

A it block : 2

y(3) = x(3)*u(2)
-------------- block : 3

v = ID2I(1,1,x(4:5)); % I(1) kron D2 kron I(1)
= v.*u(3:5);

(4:5) = ID2tI(1 1,v); % 1(1) kron D2’ kron I(1)
-------------- block :6=22x*3
v = ID2I(1,1,x(6:7)); % I(1) kron D2 kron I(1)

v = v.*u(6:8);

(6:7) = ID2tI(1 1,v); % I(1) kron D2’ kron I(1)

{ ————————————— block H

v = ID2I(1,2,x(8:11)); % I(1) kron D2 kron I(2)

v = ID2I(3,1,v); % I(3) kron D2 kron I(1)

v = v.*u(9:17);

v = ID2tI(1,3,v); % I(1) kron D2’ kron I(3)
(8:11) = ID2tI(2,1,v); % I(2) kron D2’ kron I(1)

{ -------------- block : 10 = 2 * b —=----c——coe—c--

v = ID2I(1,2,x(12:15)); % I(1) kron D2 kron I(2)

v = ID2I(3,1,v); % I(3) kron D2 kron I(1)

v = v.*u(18:26);

v = ID2tI(1,3, v) % I(1) kron D2’ kron I(3)
(12:15) = ID2tI(2,1,V); % I(2) kron D2’ kron I(1)
-------------- block : 16 = 3 #% § ~=ceecccrcrneea-

v = ID2I(1,4,x(16:23)); % I(1) kron D2 kron I(4)

v = ID2I(3,2,v); % I(3) kron D2 kron I(2)

v = ID2I(9,1,v); % I(9) kron D2 kron I(1)

v = v *u(27:53);

v = ID2tI(1,9,v); % I(1) kron D2’ kron I(9)

v = ID2tI(2,3,v); % I(2) kron D2’ kron I(3)

y(16:23) = ID2tI(4,1,v); % I(4) kron D2’ kron I(1)

h —mmmmmm——————— block : 30 =2 * 3 # § ———c—-e——-eae

v = ID2I(1,4,x(24:31)); % I(1) kron D2 kron I(4)

v = ID2I(3,2,v); % I(3) kron D2 kron I(2)

v = ID2I(9,1,v); % I(9) kron D2 kron I(1)

v = v.*u(54:80);

v = ID2tI(1,9,v); % I(1) krom D2’ kron I(9)

v = ID2tI(2,3,v); % I(2) kron D2’ kron I(3)

{(24:31) = ID2t1(4,1,v); % I(4) kron D2’ kron I(1)

y(2) = y(1)+y(2); % DC term calculation

y(2:31) = cxnzn([z 3,51,01,1,1],y(2:31)); % reduction

y = y(op); Y output permutat1on
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